MECHANISMS OF ACTION OF LITHIUM COMPOUNDS
https://doi.org/10.15372/SSMJ20190503
Abstract
This review summarizes the literature data on the role of lithium compounds in modern pharmacotherapy of various diseases of the central nervous system. Attention is also paid to other therapeutic properties of lithium in atherosclerosis, cardiovascular diseases, diabetes, hematopoietic disorders, inflammation, and diseases of the urinary system. Possible ways of delivering lithium into the body have been charted, in particular, when lithium salt is combined with a sorbent (solid porous carrier). Such compounds have additional therapeutic properties. Data on the significance of lithium compounds in studies on models of diseases of the nervous system in animals are analyzed. Among these models, models of neonatal ischemia/hypoxia of the brain in vivo, neurodegenerative diseases, psychopathological states (aggressiveness, depression) and craniocerebral injury are discussed. There are researches in which the results of the lithium preparations use in clinical practice are investigated. It emphasizes the influence of genetic factors on the lithium effects. Particular attention is paid to the possibility of preventing the toxicity of lithium compounds for the body. The currently known molecular mechanisms of lithium action are discussed: inhibition of glycogen synthase kinase 3β (GSK-3β) and inositol monophosphatase 1 (IMPA1), which have key value for autophagy, oxidative stress, inflammation, mitochondrial function, induction of neurotrophic factors, apoptosis. It was concluded that the study of the molecular pathways of the functioning of lithium compounds empowers understanding both the reasons for its effectiveness in the nervous system diseases and the mechanisms of action on other body systems.
About the Authors
M. V. RobinsonRussian Federation
doctor of biological sciences
630060, Novosibirsk, Timakov str., 2
A. A. Kotlyarova
Russian Federation
candidate of biological sciences
630060, Novosibirsk, Timakov str., 2
A. V. Shurlygina
Russian Federation
doctor of medical sciences, professor
630060, Novosibirsk, Timakov str., 2
L. N. Rachkovskaya
Russian Federation
candidate of chemical sciences
630060, Novosibirsk, Timakov str., 2
A. Yu. Letyagin
Russian Federation
doctor of medical sciences, professor
630060, Novosibirsk, Timakov str., 2
References
1. Alieva T.A., Allakhverdieva L.I. The change in the concentration of trace element lithium in the blood and lymph, depending on the level of histamine and serotonin in anaphylactic shock and the phenomenon of Arthus. Immunologiya = Immunology. 2015; 36 (1): 19–22. [In Russian].
2. Bekker R.A., Bykov Yu.V. Lithium preparations in psychiatry, addiction medicine and neurology (to the 70th anniversary of John Cade’s discovery). Part I. History. Acta Biomed. Sci. 2019; 4 (1): 72–80. [In Russian]. doi: 10.29413/ABS.2019-4.1.11.
3. Borodin Yu.I., Konenkov V.I., Parmon V.N., Lyubarkii M.S., Rachkovskaya L.N., Bgatova N.P., Letyagin A.Yu. Biological properties of sorbents and the prospects for their use. Uspekhi sovremennoi biologii = Biol. Bull. Rev. 2014; 134 (3): 236–248. [In Russian].
4. Borodin Yu.I., Rachkovskaya L.N., Darneva I.S., Novoselova T.I. Noolit enterosorbent: for physical and psychological rehabilitation of the body. Novosibirsk: Sova, 2006. 220 р. [In Russian].
5. Gromova O.A., Torshin I.Yu., Nikonov A.A., Gogoleva I.V. Lithium-containing agent for the prevention and treatment of cerebrovascular diseases and method of using this tool. Patent RF № 2367427; Published 20.09.2009. [In Russian].
6. Zamoshchina T.A. 35 years of studying lithium salts. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine. 2006; 5 (Suppl. 2): 26–29. [In Russian].
7. Kotlyarova A.A., Letyagin A.Yu., Tolstikova T.G., Rachkovskaya L.N., Robinson M.V. Correction of lithium with neurodegenerative changes in alcoholism: cell – molecular mechanisms. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Biologiya, klinicheskaya meditsina = Journal of the Novosibirsk State University. Series: Biology, Clinical Medicine. 2015; 13 (2): 56–66. [In Russian].
8. Mashkovsky M.D. Medicines, 16th ed. Moscow: Novaya volna, 2012. 1216 р. [In Russian].
9. Men’shanov P.N., Bannova A.V., Dygalo N.N. Тoxic effects of lithium chloride during early neonatal period of rat development. Bull. Exp. Biol. Med. 2016; 160 (4): 459–461. doi: 10.1007/s10517-016-3196-6.
10. Morgun A.V., Kuvacheva N.V., Khilazheva E.D., Pozhilenkova E.A., Salmina A.B. The study of metabolic conjugation and cell-cell interactions in a model of a neurovascular unit in vitro. Sibirskoe meditsinskoe obozrenie = Siberian Medical Review. 2015; 91 (1): 28–31. [In Russian].
11. Ostrenko K.S., Galochkin V.A., Gromova O.A., Rastashanskiy V.V., Torshin I.Yu. Ascorbate anion is an effective anti-stress ligand of a new generation for lithium. Farmakokinetika i farmakodinamika = Pharmacokinetics and Pharmacodynamics. 2017; 2: 45–52. [In Russian].
12. Plotnikov E.Yu., Silachev D.N., Zorova L.D., Pevzner I.B., Yankauskas S.S., Zorov S.D., Babenko V.A., Skulachev M.V., Zorov D.B. Lithium salts – simple, but magical (review). Biokhimiya = Biochemistry (Moscow). 2014; 79 (8): 740–749. [In Russian].
13. Popova T.V., Rachkovskaya L.N., Shkil’ N.N., Letyagin A.Yu., Tolstikova T.G. Study of the antibacterial activity of a new silver-containing porous complex. Meditsina i obrazovanie v Sibiri = Medicine and Education in Siberia. 2016. URL http://ngmu.ru/cozo/mos/article/abauthors.php?id=2055 (accessed 1.30.18). [In Russian].
14. Pronin A.V., Gromova O.A., Sardaryan I.S., Torshin I.Yu., Stel’mashuk E.V., Ostrenko K.S., Aleksandrova O.P., Genrikhs E.E., Khaspekov L.G. Adaptogenic and neuroprotective effects of lithium ascorbate. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2016; 116 (12): 86–91. [In Russian]. doi: 10.17116/jnevro201611612186-91.
15. Rachkovskaya L.N., Bgatova N.P., Borodin Yu.I., Konenkov V.I. Protective properties of sorbents, the possibility of using in lymphology. In: Lymphology. Novosibirsk: Manuskript, 2012: 1063–1094. [In Russian].
16. Rachkovskaya L.N., Letyagin A.Yu., Burmistrov V.A., Korolev M.A., Gel’fond N.E. Medical sorbents for practical health care. Sibirskiy nauchnyy meditsinskiy zhurnal = Siberian Scientific Medical Journal. 2015; 35 (2): 47–54. [In Russian].
17. Rachkovskaya L.N., Shtertser N.N., Rachkovskiy E.E., Kotlyarova A.A., Khasin A.V. Thermographic study of lithium-containing sorbents. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Diagnostics of Materials. 2015; 81 (10): 37–39. [In Russian].
18. Silachev D.N., Plotnikov E.Yu., Babenko V.A., Savchenko E.S., Zorova L.D., Pevzner I.B., Gulyaev M.V., Pirogov Yu.A., Sukhikh G.T., Zorov D.B. Protection of neurovascular unit cells with lithium chloride and sodium valproate prevents brain damage in neonatal ischemia/hypoxia. Bull. Exp. Biol. Med. 2015; 160 (3): 313–318. doi: 10.1007/s10517-016-3159-y.
19. Smagin D.A., Kudryavtseva N.N. Anxiogenic and anxiolytic effects of lithium chloride with preventive and therapeutic methods of administering to male mice with repeated experience of aggression. Zhurnal vysshey nervnoy deyatel’nosti imeni akademika Ivana Petrovicha Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2014; 64 (6): 646–659. [In Russian].
20. Agam G., Bersudsky Y., Berry G.T., Moechars D., Lavi-Avnon Y., Belmaker R.H. Knockout mice in understanding the mechanism of action of lithium. Biochem. Soc. Trans. 2009; (Pt. 5): 1121–1125. doi: 10.1042/BST0371121.
21. Brown K.M., Tracy D.K. Lithium: the pharmacodynamic actions of the amazing ion. Ther. Adv. Psychopharmacol. 2013; 3(3): 163–176. doi: 10.1177/2045125312471963.
22. Can A., Piantadosi S.C., Gould T.D. Differential antidepressant-like response to lithium treatment between mouse strains: Effects of sex, maternal care, and mixed genetic background. Psychopharmacology (Berl.). 2013; 228 (3):411–418. doi: 10.1007/s00213-013-3045-5.
23. Chiu C.-T., Chuang D.-M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol. Ther. 2010; 128 (2): 281–304. doi: 10.1016/j.pharmthera.2010.07.006.
24. Chuang D.-M. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit. Rev. Neurobiol. 2004; 16 (1-2): 83–90.
25. Cipriani A., Hawton K., Stockton S., Geddes J.R. Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ. 2013; 346: f3646. doi: 10.1136/bmj.f3646.
26. Cole A.R. Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J. 2013; 280 (21): 5213–5227. doi: 10.1111/febs.12407.
27. Comai S., Tau M., Gobbi G. The psychopharmacology of aggressive behavior: a translational approach: part 1: neurobiology. J. Clin. Psychopharmacol. 2012; 32 (1): 83–94. doi: 10.1097/JCP.0b013e31823f8770.
28. Dolara P. Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int. J. Food Sci. Nutr. 2014; 65 (8): 911–924. doi: 10.3109/09637486.2014.937801.
29. Dudev T., Lim C. Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy. J. Am. Chem. Soc. 2011; 133 (24): 9506–9515. doi: 10.1021/ja201985s.
30. Emamghoreishi M., Keshavarz M., Nekooeian A.A. Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iran J. Basic Med. Sci. 2015; 18 (3): 240–246.
31. Forlenza O.V., De-Paula V.J.R., Diniz B.S.O. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 2014; 5 (6): 443–450. doi: 10.1021/cn5000309.
32. Freland L., Beaulieu J.-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci. 2012; 5: 14. doi: 10.3389/fnmol.2012.00014.
33. Kerr F., Bjedov I., Sofola-Adesakin O. Molecular mechanisms of lithium action: Switching the light on multiple targets for dementia using animal models. Front. Mol. Neurosci. 2018; 11: 297. doi: 10.3389/fnmol.2018.00297.
34. Korycka A., Robak T. The effect of lithium on haematopoiesis of patients with acute myeloid leukaemia. Arch. Immunol. Ther. Exp. (Warsz.). 1991; 39 (5-6): 501–509.
35. Lloyd L.C., Giaroli G., Taylor D., Tracy D.K. Bipolar depression: clinically missed, pharmacologically mismanaged. Ther. Adv. Psychopharmacol. 2011; 1 (5): 153–162. doi: 10.1177/2045125311420752.
36. Malhi G.S., Bargh D.M., Kuiper S., Coulston C.M., Das P. Modeling bipolar disorder suicidality. Bipolar Disord. 2013; 15 (5): 559–574. doi: 10.1111/bdi.12093.
37. Müller-Oerlinghausen B., Lewitzk U. Lithium reduces pathological aggression and suicidality: a minireview. Neuropsychobiology. 2010; 62 (1): 43–49. doi: 10.1159/000314309.
38. Oruch R., Elderbi M.A., Khattab H.A., Pryme I.F., Lund A. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014; 740: 464–473. doi: 10.1016/j.ejphar.2014.06.042.
39. Praharaj S.K. Metformin for lithium-induced weight gain: A case report. Clin. Psychopharmacol. Neurosci. 2016; 14 (1): 101–103. doi: 10.9758/cpn.2016.14.1.101.
40. Sade Y., Kara N.Z., Toker L., Bersudsky Y., Einat H., Agam G. Beware of your mouse strain; differential effects of lithium on behavioral and neurochemical phenotypes in Harlan ICR mice bred in Israel or the USA. Pharmacol. Biochem. Behav. 2014; 124: 36–39. doi: 10.1016/j.pbb.2014.05.007.
41. Saeidnia S., Abdollahi M. Concerns on the growing use of lithium: the pros and cons. Iran. Red Crescent Med. J. 2013; 15 (8): 629–632. doi: 10.5812/ircmj.13756.
42. Shafti S.S. Olanzapine vs. lithium in management of acute mania. J. Affect. Disord. 2010; 122 (3): 273–276. doi: 10.1016/j.jad.2009.08.013.
43. Toker L., Bersudsky Y., Plaschkes I., Chalifa-Caspi V., Berry G.T., Buccafusca R., Moechars D., Belmaker R.H., Agam G. Inositol-related gene knockouts mimic lithium’s effect on mitochondrial function. Neuropsychopharmacology. 2014; 39 (2): 319–328. doi: 10.1038/npp.2013.194.
44. Valvassori S.S., Resende W.R., Lopes-Borges J., Mariot E., Dal-Pont G.C., Vitto M.F., Luz G., de Souza C.T., Quevedo J. Effects of mood stabilizers on oxidative stress-induced cell death signaling pathways in the brains of rats subjected to the ouabaininduced animal model of mania: Mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. J. Psychiatr. Res. 2015; 65: 63–70. doi: 10.1016/j.jpsychires.2015.04.009.
45. Vestergaard P., Schou M. Does long-term lithium treatment induce diabetes mellitus? Neuropsychobiology. 1987; 17 (3): 130–132. doi: 10.1159/000118351.
46. Voors A.W. Lithium in the drinking water and atherosclerotic heart death: Epidemiologic argument for protective effect. Am. J. Epidemiol. 1970; 92 (3): 164–71. doi: 10.1093/oxfordjournals.aje.a121194.
47. Ye C., Greenberg M.L. Inositol synthesis regulates the activation of GSK-3α in neuronal cells. J. Neurochem. 2015; 133 (2): 273–283. doi: 10.1111/jnc.12978.
48. Zhao L., Gong N., Liu M., Pan X., Sang S., Sun X., Yu Z., Fang Q., Zhao N., Fei G., Jin L., Zhong C., Xu T. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer’s disease mouse model. Neurobiol. Aging. 2014; 35 (12): 2736–2745. doi: 10.1016/j.neurobiolaging.2014.06.003.
Review
For citations:
Robinson M.V., Kotlyarova A.A., Shurlygina A.V., Rachkovskaya L.N., Letyagin A.Yu. MECHANISMS OF ACTION OF LITHIUM COMPOUNDS. Сибирский научный медицинский журнал. 2019;39(5):19-28. (In Russ.) https://doi.org/10.15372/SSMJ20190503