LITHIUM SALTS IN EXPERIMENTAL ONCOLOGY (REVIEW)
https://doi.org/10.15372/SSMJ20190502
Abstract
Recently, lithium salts have been considered as potential compounds for targeted therapy that can reduce tumor growth. There are a large number of publications indicating the effects of lithium on the signaling pathways used by tumor cells for growth and development, and have demonstrated that lithium can be used as antitumor agent in experimental oncology. The promise of using lithium salts to develop anticancer drugs is related to the fact that lithium has 2 main intracellular targets: glycogen synthase kinase-3β (GSK-3β) and inositol monophosphatase (IMPase), the inhibition of which by lithium can induce cancer cell death by apoptosis or autophagy. Lithium has been shown to block the proliferation of cancer cells by cell cycle arrest in the G2 /M phase, and also stimulates apoptosis and autophagy in cancer cells. This review summarizes data on the transport of lithium across cell membranes, characterizes its main intracellular targets and presents the results of studies in which lithium was used in experimental cancer therapy of various localization with an emphasis on signaling pathways used by cancer cells for growth and metastasis.
About the Authors
Iu. S. TaskaevaRussian Federation
630060, Novosibirsk, Timakov str., 2
630090, Novosibirsk, Pirogov str., 1
N. P. Bgatova
Russian Federation
doctor of biological sciences, professor,
630060, Novosibirsk, Timakov str., 2
References
1. Bgatova N.P., Gavrilova Yu.S., Lykov A.P., Solovyeva A.O., Makarova V.V., Borodin Yu.I., Konenkov V.I. Аpoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts. Cell Tissue Biol. 2017. 11 (4): 261–267. doi: 10.1134/S1990519X17040022.
2. Taskaeva Yu.S., Bgatova N.P. Ultrastructural changes in hepatocellular carcinoma-29 cells after treatment with lithium carbonate. Bull. Exp. Biol. Med. 2019. 167. (1): 87–90. doi: 10.1007/s10517-019-04467-3.
3. Altamura A.C., Gomeni R., Sacchetti E., Smeraldi E. Plasma and intracellular kinetics of lithium after oral administration of various lithium salts. Eur. J. Clin. Pharmacol. 1977; 12 (1): 59–63.
4. Berridge M.J., Downes C.P., Hanley M.R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 1982; 206 (3): 587–595. doi: 10.1042/bj2060587.
5. Beurel E., Blivet-Van Eggelpoël M.J., Kornprobst M., Moritz S., Delelo R., Paye F., Housset C., Desbois-Mouthon C. Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem. Pharmacol. 2009; 77 (1): 54–65. doi: 10.1016/j.bcp.2008.09.026.
6. Bijur G.N., Jope R.S. Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport. 2003; 14 (18): 2415–2419. doi 10.1097/00001756-200312190-00025.
7. Can A., Schulze T.G., Gould T.D. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol. Biochem. Behav. 2014; 123. 3–16. doi: 10.1016/j.pbb.2014.02.004.
8. Cockle J.V., Picton S., Levesley J., Ilett E., Carcaboso A.M., Short S., Steel LP., Melcher A., Lawler S.E., Brüning-Richardson A. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. Br. J. Cancer. 2015; 112 (4): 693–703. doi: 10.1038/bjc.2015.16.
9. Cohen Y., Chetrit A., Cohen Y., Sirota P., Modan B. Сancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol. 1998. 1. 32–36.
10. Costabile V., Duraturo F., Delrio P., Rega D., Pace U., Liccardo R., Rossi G.B., Genesio R., Nitsch L., Izzo P., de Rosa M. Lithium chloride induces mesenchymal-to-epithelial reverting transition in primary colon cancer cell cultures. Int. J. Oncol. 2015; 46 (5): 1913–1923. doi: 10.3892/ijo.2015.2911.
11. De Araujo W.M., Robbs B.K., Bastos L.G., de Souza W.F., Vidal F.C., Viola J.P., Morgado-Diaz J.A. PTEN overexpression cooperates with lithium to reduce the malignancy and to increase cell death by apoptosis via PI3K/AKT suppression in colorectal cancer cells. J. Cell Biochem. 2016; 117 (2): 458–469. doi: 10.1002/jcb.25294.
12. Erdal E., Ozturk N., Cagatay T., Eksioglu-Demiralp E., Ozturk M. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int. J. Cancer. 2005; 115 (6): 903–910. doi 10.1002/ijc.20972.
13. Freland L., Beaulieu J.M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci. 2012; 5: 14. doi: 10.3389/fnmol.2012.00014.
14. Fu Y., Jiao Y., Zheng S., Liang A., Hu F. Combination of lithium chloride and pEGFP-N1-BmK CT effectively decreases proliferation and migration of C6 glioma cells. Cytotechnology. 2016; 68 (2): 197–202. doi: 10.1007/s10616-014-9768-2.
15. Furuta T., Sabit H., Dong Y., Miyashita K., Kinoshita M., Uchiyama N., Hayashi Y., Hayashi Y., Minamoto T., Nakada M. Biological basis and clinical study of glycogen synthase kinase- 3β-targeted therapy by drug repositioning for glioblastoma. Oncotarget. 2017; 8 (14): 22811–22824. doi: 10.18632/oncotarget.15206.
16. Gao S., Li S., Duan X., Gu Z., Ma Z., Yuan X., Feng X., Wang H. Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol. Carcinog. 2017; 56 (10): 2301–2316. doi: 10.1002/mc.22685.
17. Hallcher L.M., Sherman W.R. The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain. J. Biol. Chem. 1980; 255 (22): 10896–10901.
18. Han S., Meng L., Jiang Y., Cheng W., Tie X., Xia J., Wu A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br. J. Cancer. 2017; 116 (10): 1302–1311. doi: 10.1038/bjc.2017.89.
19. Huang R.Y., Hsieh K.P., Huang W.W., Yang Y.H. Use of lithium and cancer risk in patients with bipolar disorder: population-based cohort study. Br. J. Psychiatry. 2016; 209 (5): 393–399. doi: 10.1192/bjp.bp.116.181362.
20. Jakobsson E., Argüello-Miranda O., Chiu S.W., Fazal Z., Kruczek J., Nunez-Corrales S., Pandit S., Pritchet L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol. 2017; 250 (6): 587–604. doi: 10.1007/s00232-017-9998-2.
21. Li H., Huang K., Liu X., Liu J., Lu X., Tao K., Wang G., Wang J. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3β/NF-κB signaling pathway. Oxid. Med. Cell Longev. 2014; 2014: 241864. doi: 10.1155/2014/241864.
22. Li L., Song H., Zhong L., Yang R., Yang X.Q., Jiang K.L., Liu B.Z. Lithium chloride promotes apoptosis in human leukemia NB4 cells by inhibiting glycogen synthase kinase-3 beta. Int. J. Med. Sci. 2015; 12 (10): 805–810. doi: 10.7150/ijms.12429.
23. Maeng Y.S., Lee R., Lee B., Choi S.I., Kim E.K. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci. Rep. 2016; 6: 20739. doi: 10.1038/srep20739.
24. Malhi G.S., Tanious M., Das P., Berk M. The science and practice of lithium therapy. Aust. N. Z. J. Psychiatry. 2012; 46 (3): 192–211. doi: 10.1177/0004867412437346.
25. Mancinelli R., Carpino G., Petrungaro S., Mammola C.L., Tomaipitinca L., Filippini A., Facchiano A., Ziparo E., Giampietri C. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid. Med. Cell Longev. 2017; 2017: 4629495. doi: 10.1155/2017/4629495.
26. Martinsson L., Westman J., Hällgren J., Ösby U., Backlund L. Lithium treatment and cancer incidence in bipolar disorder. Bipolar Disord. 2016; 18 (1): 33–40. doi: 10.1111/bdi.12361.
27. McCubrey J.A., Steelman L.S., Bertrand F.E., Davis N.M., Sokolosky M., Abrams S.L., Montalto G., D’Assoro A.B., Libra M., Nicoletti F., Maestro R., Basecke J., Rakus D., Gizak A., Demidenko Z.N., Cocco L., Martelli A.M., Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014; 5 (10): 2881–2911. doi: 10.18632/oncotarget.2037.
28. Mota de Freitas D., Leverson B.D., Goossens J.L. Lithium in medicine: mechanisms of action. Met. Ions Life Sci. 2016; 16: 557–584. doi: 10.1007/978-3-319-21756-7_15.
29. O’Donovan T.R., Rajendran S., O’Reilly S., O’Sullivan G.C., McKenna S.L. Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo. PLoS One. 2015; 10 (8): e0134676. doi: 10.1371/journal.pone.0134676.
30. Oruch R., Elderbi M.A., Khattab H.A., Pryme I.F., Lund A. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014; 740: 464–473. doi: 10.1016/j.ejphar.2014.06.042.
31. Pasquali L., Busceti C.L., Fulceri F., Paparelli A., Fornai F. Intracellular pathways underlying the effects of lithium. Behav. Pharmacol. 2010; 21 (5-6): 473–492. doi: 10.1097/FBP.0b013e32833da5da.
32. Peixoto-da-Silva J., Calgarotto A.K., Rocha K.R., Palmeira-Dos-Santos C., Smaili S.S., Pereira G.J.S., Pericole F.V., da Silva S. Duarte A., Saad S.T.O., Bincoletto C. Lithium, a classic drug in psychiatry, improves nilotinib-mediated antileukemic effects. Biomed. Pharmacother. 2018; 99: 237–244. doi: 10.1016/j.biopha.2018.01.027.
33. Phiel C.J., Klein P.S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 789–813. doi: 10.1146/annurev.pharmtox.41.1.789.
34. Quiroz J.A., Gould T.D., Manji H.K. Molecular effects of lithium. Mol. Interv. 2004; 4 (5): 259–272. doi: 10.1124/mi.4.5.6.
35. Richman L.S., Dzierba A.L., Connolly K.A., Bryan P.M., Chandra S. Artificial lithium toxicity: a case report and review of the literature. J. Pharm. Pract. 2015; 28 (5): 479–481. doi: 10.1177/0897190015587698.
36. Roux M., Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics. 2017; 9 (10): 1326–1351. doi: 10.1039/c7mt00203c.
37. Sade Y., Toker L., Kara N.Z., Einat H., Rapoport S., Moechars D., Berry G.T., Bersudsky Y., Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium’s effects that may mediate its behavioral and cellular changes. Transl. Psychiatry. 2016; 6 (12): e968. doi: 10.1038/tp.2016.217.
38. Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005; 170 (7): 1101–1111. doi: 10.1083/jcb.200504035.
39. Schleicher S.B., Zaborski J.J., Riester R., Zenkner N., Handgretinger R., Kluba T., Traub F., Boehme K.A. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One. 2017; 12 (6): e0178857. doi: 10.1371/journal.pone.0178857.
40. Taskaeva Iu., Bgatova N. Ultrastructural and immunofluorescent analysis of lithium effects on autophagy in hepatocellular carcinoma cells. Asian Pac. J. Cancer Biol. 2018; 3 (3): 83–87. doi: 10.22034/APJCB.2018.3.3.83.
41. Toker L., Agam G. Lithium, inositol and mitochondria. ACS Chem. Neurosci. 2014; 5 (6): 411–412. doi: 10.1021/cn5001149.
42. Trnski D., Sabol M., Gojević A., Martinić M., Ozretić P., Musani V., Ramić S., Levanat S. GSK3β and Gli3 play a role in activation of Hedgehog-Gli pathway in human colon cancer – Targeting GSK3β downregulates the signaling pathway and reduces cell proliferation. Biochim. Biophys. Acta. 2015; 1852 (12): 2574–2584. doi: 10.1016/j.bbadis.2015.09.005.
43. Tsui M.M., Tai W.C., Wong W.Y., Hsiao W.L. Selective G2/M arrest in a p53 (Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci. 2012; 91 (9-10): 312–321. doi: 10.1016/j.lfs.2012.07.027.
44. Vicencio J.M., Ortiz C., Criollo A., Jones A.W., Kepp O., Galluzzi L., Joza N., Vitale I., Morselli E., Tailler M., Castedo M., Maiuri M.C., Molgó J., Szabadkai G., Lavandero S., Kroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 2009; 16 (7): 1006–1017. doi: 10.1038/cdd.2009.34.
45. Vosahlikova M., Svoboda P. Lithium – therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms. Acta Neurobiol. Exp. (Wars.): 2016; 76 (1): 1–19.
46. Wang X., Fang Z., Wang A., Luo C., Cheng X., Lu M. Lithium suppresses Hedgehog signaling via promoting ITCH E3 ligase activity and Gli1-SUFU interaction in PDA cells. Front. Pharmacol. 2017; 8: 820. doi: 10.3389/fphar.2017.00820.
47. Wang X., Luo C., Cheng X., Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim. Biophys. Sin. (Shanghai): 2017; 49 (7): 573–580. doi: 10.1093/abbs/gmx045.
48. Wang Y., Zhang Q., Wang B., Li P., Liu P. LiCl treatment induces programmed cell death of schwannoma cells through AKT- and MTOR-mediated necroptosis. Neurochem. Res. 2017; 42 (8): 2363–2371. doi: 10.1007/s11064-017-2256-2.
49. Zassadowski F., Pokorna K., Ferre N., Guidez F., Llopis L., Chourbagi O., Chopin M., Poupon J., Fenaux P., Ann Padua R., Pla M., Chomienne C., Cassinat B. Lithium chloride antileukemic activity in is GSK-3 and MEK/ERK dependent. Leukemia. 2015; 29 (12): 2277–2284. doi: 10.1038/leu.2015.159.
50. Zinke J., Schneider F.T., Harter P.N., Thom S., Ziegler N., Toftgård R., Plate K.H., Liebner S. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol. Cancer. 2015; 14: 17. doi: 10.1186/s12943-015-0294-4.
Review
For citations:
Taskaeva I.S., Bgatova N.P. LITHIUM SALTS IN EXPERIMENTAL ONCOLOGY (REVIEW). Сибирский научный медицинский журнал. 2019;39(5):12-18. (In Russ.) https://doi.org/10.15372/SSMJ20190502