Preview

Сибирский научный медицинский журнал

Расширенный поиск

СОЛИ ЛИТИЯ В ЭКСПЕРИМЕНТАЛЬНОЙ ОНКОЛОГИИ (ОБЗОР ЛИТЕРАТУРЫ)

https://doi.org/10.15372/SSMJ20190502

Полный текст:

Аннотация

В последние годы соли лития рассматривают как потенциальные соединения для таргетной терапии, способные замедлить рост опухоли. Имеется большое количество публикаций, свидетельствующих об эффектах лития на сигнальные пути, используемые опухолевыми клетками для роста и развития, и продемонстрировавших возможность его применения в качестве противоопухолевого агента в экспериментальной онкологии. Перспективность применения солей лития для разработки противоопухолевых препаратов связана с тем, что Li имеет две основные внутриклеточные мишени: киназу гликогенсинтазы 3β (glycogen synthase kinase 3β, GSK-3β) и инозитолмонофосфатазу (inositol monophosphatase, IMPase), ингибирование которых может индуцировать гибель раковой клетки путем апоптоза или аутофагии. Показано, что литий вызывает остановку пролиферации опухолевых клеток за счет ареста клеточного цикла в фазе G2 /M, а также стимулирует апоптоз и влияет на развитие аутофагии в опухолевых клетках. В данном обзоре обобщены данные о транспорте лития через клеточные мембраны, охарактеризованы его основные внутриклеточные мишени и представлены результаты исследований, в которых литий применялся в экспериментальной терапии рака различной локализации с акцентом на сигнальные пути, влияющие на рост и метастазирование опухолевых клеток.

Об авторах

Ю. С. Таскаева
НИИ клинической и экспериментальной лимфологии – филиал ФИЦ Институт цитологии и генетики СО РАН, Новосибирский государственный университет
Россия

630060, г. Новосибирск, ул. Тимакова, 2

630090, г. Новосибирск, ул. Пирогова, 1



Н. П. Бгатова
НИИ клинической и экспериментальной лимфологии – филиал ФИЦ Институт цитологии и генетики СО РАН
Россия

д.б.н., проф., 

630060, г. Новосибирск, ул. Тимакова, 2



Список литературы

1. Бгатова Н.П., Гаврилова Ю.С., Лыков А.П., Соловьева А.О., Макарова В.В., Бородин Ю.И., Коненков В.И. Апоптоз и аутофагия в клетках гепатокарциномы, индуцированные различными формами солей лития. Цитология. 2017; 59 (3): 178–184.

2. Таскаева Ю.С., Бгатова Н.П. Ультраструктурные изменения в клетках гепатоцеллюлярной карциномы-29 при введении карбоната лития в эксперименте. Бюл. эксперим. биологии. 2019; 167 (1): 94–98. doi: 10.1007/s10517-019-04467-3.

3. Altamura A.C., Gomeni R., Sacchetti E., Smeraldi E. Plasma and intracellular kinetics of lithium after oral administration of various lithium salts. Eur. J. Clin. Pharmacol. 1977; 12 (1): 59–63.

4. Berridge M.J., Downes C.P., Hanley M.R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 1982; 206 (3): 587–595. doi: 10.1042/bj2060587.

5. Beurel E., Blivet-Van Eggelpoël M.J., Kornprobst M., Moritz S., Delelo R., Paye F., Housset C., Desbois-Mouthon C. Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem. Pharmacol. 2009; 77 (1): 54–65. doi: 10.1016/j.bcp.2008.09.026.

6. Bijur G.N., Jope R.S. Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport. 2003; 14 (18): 2415–2419. doi 10.1097/00001756-200312190-00025.

7. Can A., Schulze T.G., Gould T.D. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol. Biochem. Behav. 2014; 123. 3–16. doi: 10.1016/j.pbb.2014.02.004.

8. Cockle J.V., Picton S., Levesley J., Ilett E., Carcaboso A.M., Short S., Steel LP., Melcher A., Lawler S.E., Brüning-Richardson A. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. Br. J. Cancer. 2015; 112 (4): 693–703. doi: 10.1038/bjc.2015.16.

9. Cohen Y., Chetrit A., Cohen Y., Sirota P., Modan B. Сancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol. 1998. 1. 32–36.

10. Costabile V., Duraturo F., Delrio P., Rega D., Pace U., Liccardo R., Rossi G.B., Genesio R., Nitsch L., Izzo P., de Rosa M. Lithium chloride induces mesenchymal-to-epithelial reverting transition in primary colon cancer cell cultures. Int. J. Oncol. 2015;

11. (5): 1913–1923. doi: 10.3892/ijo.2015.2911.

12. De Araujo W.M., Robbs B.K., Bastos L.G., de Souza W.F., Vidal F.C., Viola J.P., Morgado-Diaz J.A. PTEN overexpression cooperates with lithium to reduce the malignancy and to increase cell death by apoptosis via PI3K/AKT suppression in colorectal cancer cells. J. Cell Biochem. 2016; 117 (2): 458–469. doi: 10.1002/jcb.25294.

13. Erdal E., Ozturk N., Cagatay T., Eksioglu-Demiralp E., Ozturk M. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int. J. Cancer. 2005; 115 (6): 903–910. doi 10.1002/ijc.20972.

14. Freland L., Beaulieu J.M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci. 2012; 5: 14. doi: 10.3389/fnmol.2012.00014.

15. Fu Y., Jiao Y., Zheng S., Liang A., Hu F. Combination of lithium chloride and pEGFP-N1-BmK CT effectively decreases proliferation and migration of C6 glioma cells. Cytotechnology. 2016; 68 (2): 197–202. doi: 10.1007/s10616-014-9768-2.

16. Furuta T., Sabit H., Dong Y., Miyashita K., Kinoshita M., Uchiyama N., Hayashi Y., Hayashi Y., Minamoto T., Nakada M. Biological basis and clinical study of glycogen synthase kinase- 3β-targeted therapy by drug repositioning for glioblastoma. Oncotarget. 2017; 8 (14): 22811–22824. doi: 10.18632/oncotarget.15206.

17. Gao S., Li S., Duan X., Gu Z., Ma Z., Yuan X., Feng X., Wang H. Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol. Carcinog. 2017; 56 (10): 2301–2316. doi: 10.1002/mc.22685.

18. Hallcher L.M., Sherman W.R. The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain. J. Biol. Chem. 1980; 255 (22): 10896–10901.

19. Han S., Meng L., Jiang Y., Cheng W., Tie X., Xia J., Wu A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br. J. Cancer. 2017; 116 (10): 1302–1311. doi: 10.1038/bjc.2017.89.

20. Huang R.Y., Hsieh K.P., Huang W.W., Yang Y.H. Use of lithium and cancer risk in patients with bipolar disorder: population-based cohort study. Br. J. Psychiatry. 2016; 209 (5): 393–399. doi: 10.1192/bjp.bp.116.181362.

21. Jakobsson E., Argüello-Miranda O., Chiu S.W., Fazal Z., Kruczek J., Nunez-Corrales S., Pandit S., Pritchet L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol. 2017; 250 (6): 587–604. doi: 10.1007/s00232-017-9998-2.

22. Li H., Huang K., Liu X., Liu J., Lu X., Tao K., Wang G., Wang J. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3β/NF-κB signaling pathway. Oxid. Med. Cell Longev. 2014; 2014: 241864. doi: 10.1155/2014/241864.

23. Li L., Song H., Zhong L., Yang R., Yang X.Q., Jiang K.L., Liu B.Z. Lithium chloride promotes apoptosis in human leukemia NB4 cells by inhibiting glycogen synthase kinase-3 beta. Int. J. Med. Sci. 2015; 12 (10): 805–810. doi: 10.7150/ijms.12429.

24. Maeng Y.S., Lee R., Lee B., Choi S.I., Kim E.K. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci. Rep. 2016; 6: 20739. doi: 10.1038/srep20739.

25. Malhi G.S., Tanious M., Das P., Berk M. The science and practice of lithium therapy. Aust. N. Z. J. Psychiatry. 2012; 46 (3): 192–211. doi: 10.1177/0004867412437346.

26. Mancinelli R., Carpino G., Petrungaro S., Mammola C.L., Tomaipitinca L., Filippini A., Facchiano A., Ziparo E., Giampietri C. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid. Med. Cell Longev. 2017; 2017: 4629495. doi: 10.1155/2017/4629495.

27. Martinsson L., Westman J., Hällgren J., Ösby U., Backlund L. Lithium treatment and cancer incidence in bipolar disorder. Bipolar Disord. 2016; 18 (1): 33–40. doi: 10.1111/bdi.12361.

28. McCubrey J.A., Steelman L.S., Bertrand F.E., Davis N.M., Sokolosky M., Abrams S.L., Montalto G., D’Assoro A.B., Libra M., Nicoletti F., Maestro R., Basecke J., Rakus D., Gizak A., Demidenko Z.N., Cocco L., Martelli A.M., Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014; 5 (10): 2881–2911. doi: 10.18632/oncotarget.2037.

29. Mota de Freitas D., Leverson B.D., Goossens J.L. Lithium in medicine: mechanisms of action. Met. Ions Life Sci. 2016; 16: 557–584. doi: 10.1007/978-3-319-21756-7_15.

30. O’Donovan T.R., Rajendran S., O’Reilly S., O’Sullivan G.C., McKenna S.L. Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo. PLoS One. 2015; 10 (8): e0134676. doi: 10.1371/journal.pone.0134676.

31. Oruch R., Elderbi M.A., Khattab H.A., Pryme I.F., Lund A. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur. J. Pharmacol. 2014; 740: 464–473. doi: 10.1016/j.ejphar.2014.06.042.

32. Pasquali L., Busceti C.L., Fulceri F., Paparelli A., Fornai F. Intracellular pathways underlying the effects of lithium. Behav. Pharmacol. 2010; 21 (5-6): 473–492. doi: 10.1097/FBP.0b013e32833da5da.

33. Peixoto-da-Silva J., Calgarotto A.K., Rocha K.R., Palmeira-Dos-Santos C., Smaili S.S., Pereira G.J.S., Pericole F.V., da Silva S. Duarte A., Saad S.T.O., Bincoletto C. Lithium, a classic drug in psychiatry, improves nilotinib-mediated antileukemic effects. Biomed. Pharmacother. 2018; 99: 237–244. doi: 10.1016/j.biopha.2018.01.027.

34. Phiel C.J., Klein P.S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 789–813. doi: 10.1146/annurev.pharmtox.41.1.789.

35. Quiroz J.A., Gould T.D., Manji H.K. Molecular effects of lithium. Mol. Interv. 2004; 4 (5): 259–272. doi: 10.1124/mi.4.5.6.

36. Richman L.S., Dzierba A.L., Connolly K.A., Bryan P.M., Chandra S. Artificial lithium toxicity: a case report and review of the literature. J. Pharm. Pract. 2015; 28 (5): 479–481. doi: 10.1177/0897190015587698.

37. Roux M., Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics. 2017; 9 (10): 1326–1351. doi: 10.1039/c7mt00203c.

38. Sade Y., Toker L., Kara N.Z., Einat H., Rapoport S., Moechars D., Berry G.T., Bersudsky Y., Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium’s effects that may mediate its behavioral and cellular changes. Transl. Psychiatry. 2016; 6 (12): e968. doi: 10.1038/tp.2016.217.

39. Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005; 170 (7): 1101–1111. doi: 10.1083/jcb.200504035.

40. Schleicher S.B., Zaborski J.J., Riester R., Zenkner N., Handgretinger R., Kluba T., Traub F., Boehme K.A. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One. 2017; 12 (6): e0178857. doi: 10.1371/journal.pone.0178857.

41. Taskaeva Iu., Bgatova N. Ultrastructural and immunofluorescent analysis of lithium effects on autophagy in hepatocellular carcinoma cells. Asian Pac. J. Cancer Biol. 2018; 3 (3): 83–87. doi: 10.22034/APJCB.2018.3.3.83.

42. Toker L., Agam G. Lithium, inositol and mitochondria. ACS Chem. Neurosci. 2014; 5 (6): 411–412. doi: 10.1021/cn5001149.

43. Trnski D., Sabol M., Gojević A., Martinić M., Ozretić P., Musani V., Ramić S., Levanat S. GSK3β and Gli3 play a role in activation of Hedgehog-Gli pathway in human colon cancer – Targeting GSK3β downregulates the signaling pathway and reduces cell proliferation. Biochim. Biophys. Acta. 2015; 1852 (12): 2574–2584. doi: 10.1016/j.bbadis.2015.09.005.

44. Tsui M.M., Tai W.C., Wong W.Y., Hsiao W.L. Selective G2/M arrest in a p53 (Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci. 2012; 91 (9-10): 312–321. doi: 10.1016/j.lfs.2012.07.027.

45. Vicencio J.M., Ortiz C., Criollo A., Jones A.W., Kepp O., Galluzzi L., Joza N., Vitale I., Morselli E., Tailler M., Castedo M., Maiuri M.C., Molgó J., Szabadkai G., Lavandero S., Kroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 2009; 16 (7): 1006–1017. doi: 10.1038/cdd.2009.34.

46. Vosahlikova M., Svoboda P. Lithium – therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms. Acta Neurobiol. Exp. (Wars.): 2016; 76 (1): 1–19.

47. Wang X., Fang Z., Wang A., Luo C., Cheng X., Lu M. Lithium suppresses Hedgehog signaling via promoting ITCH E3 ligase activity and Gli1-SUFU interaction in PDA cells. Front. Pharmacol. 2017; 8: 820. doi: 10.3389/fphar.2017.00820.

48. Wang X., Luo C., Cheng X., Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim. Biophys. Sin. (Shanghai): 2017; 49 (7): 573–580. doi: 10.1093/abbs/gmx045.

49. Wang Y., Zhang Q., Wang B., Li P., Liu P. LiCl treatment induces programmed cell death of schwannoma cells through AKT- and MTOR-mediated necroptosis. Neurochem. Res. 2017; 42 (8): 2363–2371. doi: 10.1007/s11064-017-2256-2.

50. Zassadowski F., Pokorna K., Ferre N., Guidez F., Llopis L., Chourbagi O., Chopin M., Poupon J., Fenaux P., Ann Padua R., Pla M., Chomienne C., Cassinat B. Lithium chloride antileukemic activity in is GSK-3 and MEK/ERK dependent. Leukemia. 2015; 29 (12): 2277–2284. doi: 10.1038/leu.2015.159.

51. Zinke J., Schneider F.T., Harter P.N., Thom S., Ziegler N., Toftgård R., Plate K.H., Liebner S. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol. Cancer. 2015; 14: 17. doi: 10.1186/s12943-015-0294-4.


Для цитирования:


Таскаева Ю.С., Бгатова Н.П. СОЛИ ЛИТИЯ В ЭКСПЕРИМЕНТАЛЬНОЙ ОНКОЛОГИИ (ОБЗОР ЛИТЕРАТУРЫ). Сибирский научный медицинский журнал. 2019;39(5):12-18. https://doi.org/10.15372/SSMJ20190502

For citation:


Taskaeva I.S., Bgatova N.P. LITHIUM SALTS IN EXPERIMENTAL ONCOLOGY (REVIEW). Siberian Scientific Medical Journal. 2019;39(5):12-18. (In Russ.) https://doi.org/10.15372/SSMJ20190502

Просмотров: 12


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)