Convolutional neural network model for segmentation of magnetic resonance images with brain tumors
https://doi.org/10.18699/SSMJ20250624
Abstract
Accurate and fast segmentation of magnetic resonance (MR) images with volumetric brain formations, such as glioblastomas and meningiomas, helps plan surgical and radiation treatment, increase the safety and radicality of surgical intervention, which in turn allows to increase the overall life expectancy of patients and the disease-free period. It is required for the development and evaluation of the effectiveness of a deep convolutional neural network with transmission connections for automatic segmentation of volumetric brain formations (meningiomas and glioblastomas) on postoperative MR images, as well as analysis of its accuracy in comparison with manual expert segmentation and existing methods.
Material and methods. The paper considers the creation of an architecture inspired by the SegResNet model, training on BraTS2024-GLI and BraTS2024-MEN-RT, describes a method for compiling a training sample that reduces class imbalance, and analyzes the results in comparison with participants in the BraTS 2024 competition.
Results and discussion. The developed model was trained and tested on two datasets of postoperative images of glioblastoma and meningioma. Several metrics are analyzed to compare the model with the methods described in the literature, as well as to evaluate it in the context of the variability of manual segmentation by different experts. The model achieves a Sorensen coefficient 0.8299 for meningioma segmentation and 0.7028 for glioblastoma contrast-accumulating region segmentation. In addition, the segmentation of the model provides an accurate estimate of the volume of the tumor area, as evidenced by the high values of the coefficient of intra-class correlation – 0.9661 for meningioma and 0.8339 for glioblastoma. Overall, the developed model requires fewer resources for learning and getting results.
Conclusions. Model performs segmentation at least at the expert level, but with significantly less variability, especially when assessing the volume of the tumor after surgical treatment.
About the Authors
I. O. NikishevRussian Federation
Ivan O. Nikishev
107023, Moscow, Bolshaya Semyonovskaya st., 38
G. S. Sergeev
Russian Federation
Gleb S. Sergeev - candidate of medical sciences.
129090, Moscow, Shchepkina st., 35
V. Yu. Vereshchagin
Russian Federation
Vladislav Yu. Vereshchagin - candidate of technical sciences.
107023, Moscow, Bolshaya Semyonovskaya st., 38
A. L. Krivoshapkin
Russian Federation
Alexey L. Krivoshapkin - doctor of medical sciences, professor.
129090, Moscow, Shchepkina st., 35; 117198, Moscow, Miklukho-Maklaya st., 6; 630055, Novosibirsk, Rechkunovskaya st., 15
References
1. Ostrom Q.T., Price M., Neff C., Cioffi G., Waite K.A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2015– 2019. Neuro Oncol. 2022;24(Supplement_5):v1–v95. doi: 10.1093/neuonc/noac202
2. Clinical guidelines. Primary tumors of the central nervous system. 2020. Available at: https://oncologyassociation.ru/wp-content/uploads/2020/09/pervichnye_opuholi_cns.pdf [In Russian].
3. Idu A.A., Bogaciu N.S., Ciurea A.V. Brain imaging and morphological plasticity in glioblastoma: a literature review. J. Med. Life. 2023;16(3):344–347. doi: 10.25122/jml-2022-0201
4. Hughes J.D., Fattahi N., van Gompel J., Arani A., Meyer F., Lanzino G., Link M.J., Ehman R., Huston J. Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery. 2015;77(4):653–659. doi: 10.1227/NEU.0000000000000892
5. Yeh F.C., IrimiaA., Bastos D.C.D.A., GolbyA.J. Tractography methods and findings in brain tumors and traumatic brain injury. NeuroImage. 2021;245:118651. doi: 10.1016/j.neuroimage.2021.118651
6. Krivoshapkin A.L., Sergeev G.S., Gaytan A.S., Kalneus L.E., Kurbatov V.P., Abdullaev O.A., Salim N., Bulanov D.V., Simonovich A.E. Automated volumetric analysis of postoperative magnetic resonance imaging predicts survival in patients with glioblastoma. World Neurosurg. 2019;126:e1510–e1517. doi: 10.1016/j.wneu.2019.03.142
7. Helland R.H., Ferles A., Pedersen A., Kommers I., Ardon H., Barkhof F., Bello L., Berger M.S., Dunås T., Nibali M.C., … Bouget D. Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks. Sci. Rep. 2023;13(1):18897. doi: 10.1038/s41598-023-45456-x
8. Krivoshapkin A.L., Sergeev G.S., Kalneus L.E., Gaytan A.S., Murtazin V.I., Kurbatov V.P., Volkov A.M., Kostromskaya D.V., Pyatov S.M., Amelin M.E., Duishobaev A.R. New software for preoperative diagnostics of meningeal tumor histologic types. World Neurosurg. 2016;90:123–132. doi: 10.1016/j.wneu.2016.02.084
9. Davis M. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 2016;20(5):S2–S8. doi: 10.1188/16.CJON.S1.2-8
10. Nanda A., Bir S.C., Maiti T.K., Konar S.K., Missios S., Guthikonda B. Relevance of Simpson grading system and recurrence-free survival after surgery for World Health Organization Grade I meningioma. J. Neurosurg. 2017;126(1):201–211. doi: 10.3171/2016.1.JNS151842
11. Wen P.Y., van den Bent M., Youssef G., Cloughesy T.F., Ellingson B.M., Weller M., Galanis E., Barboriak D.P., De Groot J., Gilbert M.R., … ChangS.M. RANO 2.0: Update to the response assessment in neuro-oncology criteria for highand low-grade gliomas in adults. J. Clin. Oncol. 2023;41(33):5187–5199. doi: 10.1200/JCO.23.01059
12. Berntsen E.M., Stensjøen A.L., Langlo M.S., Simonsen S.Q., Christensen P., Moholdt V.A., Solheim O. Volumetric segmentation of glioblastoma progression compared to bidimensional products and clinical radiological reports. Acta Neurochir. (Wien). 2020;162(2):379–387. doi: 10.1007/s00701-019-04110-0
13. Visser M., Müller D.M.J., van Duijn R.J.M., Smits M., Verburg N., Hendriks E.J., Nabuurs R.J.A., Bot J.C.J., Eijgelaar R.S., Witte M., … de Munck J.C. Inter-rater agreement in glioma segmentations on longitudinal MRI. Neuroimage Clin. 2019;22:101727. doi: 10.1016/j.nicl.2019.101727
14. Sahoo P.K., Soltani S., Wong A.K.C. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing. 1988;41(2):233–260. doi: 10.1016/0734-189X(88)90022-9
15. Manousakas I.N., Undrill P.E., Cameron G.G., Redpath T.W. Split-and-merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions. Comput. Biomed. Res. 1998;31(6):393–412. doi: 10.1006/cbmr.1998.1489
16. Bezdek J.C., Hall L.O., Clarke L.P. Review of MR image segmentation techniques using pattern recognition. Med. Phys. 1993;20(4):1033–1048. doi: 10.1118/1.597000
17. Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018
18. Dale A.M., Fischl B., Sereno M.I. Cortical surface-based analysis. Neuroimage. 1999;9(2):179–194. doi: 10.1006/nimg.1998.0395
19. Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E.J., Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., … Matthews P.M. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051
20. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 1979;9(1):62–66. doi: 10.1109/TSMC.1979.4310076
21. Cordova J.S., Schreibmann E., Hadjipanayis C.G., Guo Y., Shu H.K.G., Shim H., Holder C.A. Quantitative tumor segmentation for evaluation of extent of glioblastoma resection to facilitate multisite clinical trials. Transl. Oncol. 2014;7(1):40–W5. doi: 10.1593/tlo.13835
22. Odland A., Server A., Saxhaug C., Breivik B., Groote R., Vardal J., Larsson C., Bjørnerud A. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth. Acta. Radiol. 2015;56(11):1396– 1403. doi: 10.1177/0284185114554822
23. Zeng K., Bakas S., Sotiras A., Akbari H., Rozycki M., Rathore S., Pati S., Davatzikos C. Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. Brainlesion. 2016;10154:184–194. doi: 10.1007/978-3-31955524-9_18
24. Cireşan D.C., Giusti A., Gambardella L.M., Schmidhuber J. Deep neural networks segment neuronal membranes in electron microscopy images. Advances in Neural Information Processing Systems: proc. conf., Lake Tahoe Nevada, December 3–6, 2012. Red Hook: Curran Associates Inc, 2012. 2843–2851.
25. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science. New York: Springer International Publishing, 2015; 234–241. doi: 10.1007/978-3-319-24574-4_28
26. Isensee F., Jäger P.F., Full P.M., Vollmuth P., Maier-Hein K.H. nnU-Net for Brain Tumor Segmentation. In: Lecture Notes in Computer Science. New York: Springer International Publishing, 2021; 118–132. doi: 10.1007/978-3-030-72087-2_11
27. LaBella D., Adewole M., Alonso-Basanta M., Altes T., Anwar S.M., Baid U., Bergquist T., Bhalerao R., Chen S., Chung V., … Calabrese E. The ASNRMICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: intracranial meningioma. Published online May 12, 2023. doi: 10.48550/arXiv.2305.07642
28. de Verdier M.C., Saluja R., Gagnon L., LaBella D., Baid U., Tahon N.H., Foltyn-Dumitru M., Zhang J., Alafif M., Baig S., … Rudie J.D. The 2024 brain tumor segmentation (BraTS) challenge: glioma segmentation on post-treatment MRI. Published online 2024. doi: 10.48550/ARXIV.2405.18368
29. LaBella D., Schumacher K., Mix M., Leu K., McBurney-Lin S., Nedelec P., Villanueva-Meyer J., Shapey J., Vercauteren T., Chia K., … Calabrese E. Brain Tumor Segmentation (BraTS) Challenge 2024: meningioma radiotherapy planning automated segmentation. Published online 2024. doi: 10.48550/ARXIV.2405.18383
30. Rohlfing T., Zahr N.M., Sullivan E.V., Pfefferbaum A. The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain. Mapp. 2010;31(5):798–819. doi: 10.1002/hbm.20906
31. Isensee F., Schell M., Pflueger I., Brugnara G., Bonekamp D., Neuberger U., Wick A., Schlemmer H., Heiland S., Wick W., Bendszus M., Maier-Hein K.H., Kickingereder P. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain. Mapp. 2019;40(17):4952–4964. doi: 10.1002/hbm.24750
32. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. In: Lecture Notes in Computer Science. New York: Springer International Publishing, 2019; P. 311–320. doi: 10.1007/978-3-03011726-9_28
33. Kingma D.P., Ba J. Adam: A method for stochastic optimization. Published online January 30, 2017. doi: 10.48550/arXiv.1412.6980
34. Smith L.N., Topin N. Super-convergence: very fast training of neural networks using large learning rates. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications: proc. conf., Baltimore, April 14–18, 2019. Bellingham: SPIE, 2019; 1100612. doi: 10.1117/12.2520589
35. Lin T.Y., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object Detection. IEEE International Conference on Computer Vision: proc. conf., Venice, October 22–29, 2017. Piscataway: IEEE, 2017; 2999–3007. doi: 10.1109/ICCV.2017.324
36. Sudre C.H., Li W., Vercauteren T., Ourselin S., Jorge Cardoso M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Lecture Notes in Computer Science. New York: Springer International Publishing, 2017; 240–248. doi: 10.1007/978-3-319-67558-9_28
37. McGraw K.O., Wong S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods. 1996;1(1):30–46. doi: 10.1037/1082989X.1.1.30
38. Mall P.K., Singh P.K., Srivastav S., Narayan V., Paprzycki M., Jaworska T., Ganzha M. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthc. Anal. (N.Y.). 2023;4(1):100216. doi: 10.1016/j.health.2023.100216
39. Ferreira A., Jesus T., Puladi B., Kleesiek J., Alves V., Egger J. Improved multi-task brain tumour segmentation with synthetic data augmentation. Published online December 2, 2024. doi: 10.48550/arXiv.2411.04632
40. Roy S., Koehler G., Ulrich C., Baumgartner M., Petersen J., Isensee F., Jäger P.F., Maier-Hein K.H. MedNeXt: transformer-driven scaling of convnets for medical image segmentation. In: Lecture Notes in Computer Science. Cham: Springer, 2023. P. 405–415. doi: 10.1007/978-3-031-43901-8_39
Review
JATS XML






























