On the impact of the COVID-19 pandemic on the мanifestations of aging
https://doi.org/10.18699/SSMJ20250615
Abstract
The COVID-19 pandemic has affected many aspects of human life, including accelerated aging of the population. Numerous scientific papers indicate the negative impact of SARS-CoV-2 on health, manifested in a number of changes: from shortening of telomeres and an increase in neurodegenerative diseases to cognitive impairment, depression and an increased risk of cardiovascular diseases, including myocarditis and arrhythmia. In addition, there are problems withcoagulation, changes in the expression of the angiotensin-converting enzyme 2 gene, signs of early vascular aging, early immunological aging, metabolic syndrome and external manifestations of premature aging. The list of consequences of COVID-19 is constantly expanding, including changes in blood biochemistry. In this regard, it is imperative to study the mechanisms underlying these changes and develop prevention strategies to maintain healthy aging in the post-COVID era. These features can be taken into account when developing projects to support the older generation.
Keywords
About the Authors
O. N. ErgashevRussian Federation
Oleg N. Ergashev - doctor of medical sciences, professor.
197022, Saint-Petersburg, Acad. I.P. Pavlov st., 12D; 197022, Saint-Petersburg, L. Tolstoy st., 6-8
U. R. Saginbaev
Russian Federation
Ural R. Saginbaev - candidate of biological sciences.
197022, Saint-Petersburg, Acad. I.P. Pavlov st., 12D; 197022, Saint-Petersburg, L. Tolstoy st., 6-8
I. M. Kobelev
Russian Federation
Ivan M. Kobelev - candidate of biological sciences.
197110, Saint-Petersburg, Dynamo ave., 3
References
1. Mironov I.V., Gordienko A.V., Serdyukov D.Yu., Chumak B.A., Yakovlev V.V. Telomere length, severity of coronavirus infection and premature aging (literature review). Mediko-farmatsevticheskiy zhurnal «Pul's» = Medical and Pharmaceutical Journal «Pulse». 2022;24(4):84–89. [In Russian]. doi: 10.26787/nydha-2686-6838-2022-24-4-84-89
2. Sharma P., Sharma R. Impact of COVID-19 on mental health and aging. Saudi J. Biol. Sci. 2021;28(12):7046–7053. doi: 10.1016/j.sjbs.2021.07.087
3. Davis H.E., Assaf G.S., McCorkell L., Wei H., Low R.J., Re’em Y., Redfield S., Austin J.P., Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019
4. Marois G., Muttarak R., Scherbov S. Assessing the potential impact of COVID-19 on life expectancy. PLoS ONE. 2020;15(9):e0238678. doi: 10.1371/journal.pone.0238678
5. Epel E.S. Can childhood adversity affect telomeres of the next generation? Possible mechanisms, implications, and next-generation research. Amer. J. Psychiat. 2020;177(1):7–9. doi: 10.1176/appi.ajp.2019.19111161
6. Yarochkina M.V., Podsevatkin V.G., Kiryukhina S.V. Psychological and mental disorders associated with the COVID-19 pandemic. Internauka. 2023;17:17. [In Russian].
7. Strong M.J. SARS-CoV-2, aging, and PostCOVID-19 neurodegeneration. J. Neurochem. 2023;165(2):115–130. doi: 10.1111/jnc.15736
8. Giussani G., Westenberg E., Garcia-Azorin D., Bianchi E., Yusof Khan A.H.K., Allegri R.F., Atalar A.C., Baykan B., Crivelli L., Fornari A., … Global COVID-19 neuro research coalition. prevalence and trajectories of post-COVID-19 neurological manifestations: a systematic review and meta-analysis. Neuroepidemiology. 2024;58(2):120–133. doi: 10.1159/000536352
9. Alemanno F., Houdayer E., Parma A., Spina A., Del Forno A., Scatolini A., Angelone S., Brugliera L., Tettamanti A., Beretta L., Iannaccone S. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE. 2021;16(2):e0246590. doi: 10.1371/journal.pone.0246590
10. Toniolo S., di Lorenzo F., Scarioni M., Frederiksen K.S., Nobili F. is the frontal lobe the primary target of SARS-CoV-2? J. Alzheimers Dis. 2021;81(1):75–81. doi: 10.3233/JAD-210008
11. Douaud G., Lee S., Alfaro-Almagro F., Arthofer C., Wang C., McCarthy P., Lange F., Andersson J.L.R., Griffanti L., Duff E., … Smith S.M. SARSCoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697–707. doi: 10.1038/s41586-022-04569-5
12. Beker N., Ganz A., Hulsman M., Klausch T., Schmand B.A., Scheltens P., Sikkes S.A.M., Holstege H. Association of cognitive function trajectories in centenarians with postmortem neuropathology, physical health, and other risk factors for cognitive decline. JAMA Netw Open. 2021;4(1):e2031654. doi: 10.1001/jamanetworkopen.2020.31654
13. Azcue N., Gomez-Esteban J.C., Acera M., Tijero B., Fernandez T., Ayo-Mentxakatorre N., Pérez-Concha T., Murueta-Goyena A., Lafuente J.V., Prada Á., … Del Pino R. Brain fog of post-COVID-19 condition and Chronic Fatigue Syndrome, same medical disorder? J. Transl. Med. 2022;20(1):569. doi: 10.1186/s12967022-03764-2
14. Galkin K.A. New trends in age and aging research in the post-pandemic period (research overview). Uspekhi gerontologii = Advances in Gerontology. 2023;36(3):284–291. [In Russian]. doi: 10.34922/AE.2023.36.3.001
15. Guo X., Franco O.H., Laine J.E. Accelerated ageing in the COVID-19 pandemic: A dilemma for healthy ageing. Maturitas. 2022;157:68–69. doi: 10.1016/j.maturitas.2021.12.009
16. Harvanek Z.M., Fogelman N., Xu K., Sinha R. Psychological and biological resilience modulates the effects of stress on epigenetic aging. Transl. Psychiatry. 2021;11(1):601. doi: 10.1038/s41398-021-01735-7
17. Oronsky B., Larson C., Hammond T.C., Oronsky A., Kesari S., Lybeck M., Reid T.R. A review of persistent post-COVID syndrome (PPCS). Clin. Rev. Allergy Immunol. 2023;64(1):66–74. doi: 10.1007/s12016-021-08848-3
18. Tanni S.E., Fabro A.T., de Albuquerque A., Ferreira E.V.M., Verrastro C.G.Y., Sawamura M.V.Y., Ribeiro S.M., Baldi B.G. Pulmonary fibrosis secondary to COVID-19: a narrative review. Expert Rev. Respir. Med. 2021;15(6):791–803. doi: 10.1080/17476348.2021.1916472
19. Biernacka A., Frangogiannis N.G. Aging and cardiac fibrosis. Aging Dis. 2011;2(2):158–173.
20. Wu Q., Zhou L., Sun X., Yan Z., Hu C., Wu J., Xu L., Li X., Liu H., Yin P., … Chen H. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci. Rep. 2017;7(1):9110. doi: 10.1038/s41598-017-09536-z
21. Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 2020;20(4):425–434. doi: 10.1016/S1473-3099(20)30086-4
22. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020;14(3):247–250. doi: 10.1016/j.dsx.2020.03.013
23. Klok F.A., Kruip M.J., Meer N.J.M., Arbous M.S., Gommers D.A., Kant K.M., Kaptein F.H.J., Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013
24. Stavileci B., Ozdemir E., Ozdemir B., Ereren E., Cengiz M. De-novo development of fragmented QRS during a six-month follow-up period in patients with COVID-19 disease and its cardiac effects. J. Electrocardiol. 2022;72:44–48. doi: 10.1016/j.jelectrocard.2022.02.012
25. Abdulan I.M., Feller V., Oancea A., Maștaleru A., Alexa A.I., Negru R., Cumpat C.M., Leon M.M. Evolution of cardiovascular risk factors in post-COVID patients. J. Clin. Med. 2023;12(20):6538. doi: 10.3390/jcm12206538
26. Zuin M., Rigatelli G., Roncon L., Pasquetto G., Bilato C. Risk of incident heart failure after COVID-19 recovery: a systematic review and meta-analysis. Heart Fail. Rev. 2023;28(4):859–864. doi: 10.1007/s10741022-10292-0
27. Avdeeva I.V., Polezhaeva K.N., Burko N.V., Khromova A.A., Tomashevskaya Yu.A., Oleynikov V.E. The effect of SARS-COV-2 infection on structural and functioal properties of arteries. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskiye nauki = University Proceedings. Volga Region. Medical Sciences. 2022;(2):14–25. [In Russian]. doi: 10.21685/2072-3032-2022-2-2
28. Oleynikov V.E., Avdeeva I.V., Polezhaeva K.N., Pavlenko K.I., Borisova N.A., Khromova A.A., Kulyutsin A.V. Structural and functional properties of arteries in COVID-19 survivors. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2023;22(5):33–42. [In Russian]. doi: 10.15829/1728-8800-2023-3541
29. Golubev A.G. Biology of lifespan and aging. SaintPetersburg: N-L, 2009. 384 p. [In Russian].
30. Drozhdina E.P., Stolbovskaya O.V., Kurnosova N.A., Mikheeva N.A. Fundamentals of the biology of aging: a teaching aid. Ulyanovsk: UlSU. 2017. 46 p. [In Russian].
31. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020;2020:7489795. doi: 10.1155/2020/7489795
32. Jha M.K., Chin Fatt C.R., Minhajuddin A., Mayes T.L., Berry J.D., Trivedi M.H. Accelerated brain aging in individuals with diabetes: Association with poor glycemic control and increased all-cause mortality. Psychoneuroendocrinology. 2022;145:105921. doi: 10.1016/j.psyneuen.2022.105921
33. Neverova N.D., Stakanova A.V., Fertikova N.S., Khvatova N.L. Average glucose level in COVID-19. Tendentsii razvitiya nauki i obrazovaniya = Trends in Science and Education Development. 2022;(87-1):139–142. [In Russian]. doi: 10.18411/trnio-07-2022-32
34. Bairova K.I., Teplova N.V., Dalakyan D.Yu. Hyperglycemia in COVID-19. Fundamental and clinical diabetology in the 21st century: from theory to practice: proc. conf., Moscow, September 7–8, 2022. Moscow, 2022. P. 17. [In Russian]. doi: 10.14341/Conf7-8.09.22-17
35. Kim A., Kim E.Y., Kim J. Impact of the COVID-19 pandemic on obesity, metabolic parameters and clinical values in the South Korean adult population. J. Clin. Med. 2024;13(10):2814. doi: 10.3390/jcm13102814
36. Kuzina I.A., Goncharova E.V., Martirosyan N.S., Telnova M.E., Nedosugova L.V., Tulsky A.A., Petunina N.A. Historical aspects of diagnosis and control of diabetes mellitus. Terapevticheskiy arkhiv = Therapeutic Archive. 2022;94(10):1216–1220. [In Russian]. doi: 10.26442/00403660.2022.10.201890
37. Type 1 diabetes mellitus in adults. Clinical guidelines of the Russian Federation. 2022. Available at: https://base.garant.ru/406534305/ [In Russian].
38. Ribeiro J., Severo M., Oliveira A., Lopes C., Real H. Development and validation of a food literacy self-perceived assessment scale for the Portuguese adult population. Academia Nutrition and Dietetics. 2025;2(2). doi: 10.20935/AcadNutr7685
39. Sharma A., Misra-Hebert A.D., Mariam A., Milinovich A., Onuzuruike A., Koomson W., Kattan M.W., Pantalone K.M., Rotroff D.M. Impacts of COVID-19 on glycemia and risk of diabetic ketoacidosis. Diabetes. 2023;72(5):627–637. doi: 10.2337/db220264
40. Su Y., Yuan D., Chen D.G., Ng R.H., Wang K., Choi J., Li S., Hong S., Zhang R., Xie J., … Heath J.R. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–895.e820. doi: 10.1016/j.cell.2022.01.014
41. Liu Y., Lou X. The bidirectional association between metabolic syndrome and long-COVID-19. Diabetes Metab. Syndr. Obes. 2024;17:3697–3710. doi: 10.2147/DMSO.S484733
42. Tleyjeh I.M., Saddik B., AlSwaidan N., AlAnazi A., Ramakrishnan R.K., Alhazmi D., Aloufi A., AlSumait F., Berbari E., Halwani R. Prevalence and predictors of Post-Acute COVID-19 Syndrome (PACS) after hospital discharge: a cohort study with 4 months median follow-up. PLoS ONE. 2021;16(12):e0260568. doi: 10.1371/journal.pone.0260568
43. Zuin M., Rigatelli G., Zuliani G., Rigatelli A., Mazza A., Roncon L. Arterial hypertension and risk of death in patients with COVID-19 infection: systematic review and meta-analysis. J Infect. 2020;81(1):e84–e86. doi: 10.1016/j.jinf.2020.03.059
44. Ternushchak T.M., Tovt-Korshynska M.I., Varvarynets A.V. Ambulatory blood pressure variability in young adults with long-covid syndrome. Wiad Lek. 2022;75(10):2481–2485. doi: 10.36740/WLek202210131
45. Verrijken A., Francque S., Mertens I., Prawitt J., Caron S., Hubens G., van Marck E., Staels B., Michielsen P., van Gaal L. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014;59(1):121–129. doi: 10.1002/hep.26510
46. Gazzaruso C., Paolozzi E., Valenti C., Brocchetta M., Naldani D., Grignani C., Salvucci F., Marino F., Coppola A., Gallotti P. Association between antithrombin and mortality in patients with COVID-19. A possible link with obesity. Nutr. Metab. Cardiovasc. Dis. 2020;30(11):1914–1919. doi: 10.1016/j.numecd.2020.07.040
47. Gue Y.X., Gorog D.A. Reduction in ACE2 may mediate the prothrombotic phenotype in COVID-19. Eur. Heart. J. 2020;41(33):3198–3199. doi: 10.1093/eurheartj/ehaa534
48. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY). 2020;12(8):6511– 6517. doi: 10.18632/aging.103001
49. Mongelli A., Barbi V., Gottardi Zamperla M., Atlante S., Forleo L., Nesta M., Massetti M., Pontecorvi A., Nanni S., Farsetti A., … Gaetano C. evidence for biological age acceleration and telomere shortening in COVID-19 survivors. Int. J. Mol. Sci. 2021;22(11):6151. doi: 10.3390/ijms22116151
50. Bekaert B., Kamalandua A., Zapico S.C., van de Voorde W., Decorte R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015;10(10):922– 930. doi: 10.1080/15592294.2015.1080413
51. Cao X., Li W., Wang T., Ran D., Davalos V., Planas-Serra L., Pujol A., Esteller M., Wang X., Yu H. Accelerated biological aging in COVID-19 patients. Nat. Commun. 2022;13(1):2135. doi: 10.1038/s41467022-29801-8
52. Bejaoui Y., Humaira Amanullah F., Saad M., Taleb S., Bradic M., Megarbane A., Ait Hssain A., Abi Khalil C., El Hajj N. Epigenetic age acceleration in surviving versus deceased COVID-19 patients with acute respiratory distress syndrome following hospitalization. Clin. Epigenetics. 2023;15(1):186. doi: 10.1186/s13148-023-01597-4
53. Humaira Amanullah, F., Alam, T., El Hajj, N., Bejaoui, Y. The impact of COVID-19 on “biological aging”. Front. Immunol. 2024;15:1399676. doi: 10.3389/fimmu.2024.1399676
54. Spivak I.M., Zhekalov A.N., Mironov I.V., Chumak B.A., Yakovlev V.V. Shortening of telomere length in pneumonia caused by a new coronavirus infection. Zdorov’ye – osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya = Health is the Basis of Human Potential: Problems and Ways to Solve Them. 2021;16(1):371–377. [In Russian] doi: 10.26787/nydha-2686-6838-2022-24-4-84-89
55. Sanchez-Vazquez R., Guío-Carrión A., Zapatero-Gaviria A., Martínez P., Blasco M.A. Shorter telomere lengths in patients with severe COVID-19 disease. Aging (Albany NY). 2021;13(1):1–15. doi: 10.18632/aging.202463
56. Avdeeva I.V. Coronavirus infection and cardiovascular damage: clinical and preclinical manifestations (literature review). Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskiye nauki = University Proceedings. Volga Region. Medical Sciences. 2021;3:5–18. [In Russian]. doi: 10.21685/2072-3032-2021-3-1
57. Retuerto M., Lledó A., Fernandez-Varas B., Guerrero-López R., Usategui A., Lalueza A., GarcíaGarcía R., Mancebo E., Paz-Artal E., Sastre L., Perona R., Pablos J.L. Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities. Immun. Ageing. 2022;19(1):38. doi: 10.1186/s12979-022-00294-9
58. Villar-Juárez G.E., Genis-Mendoza A.D., Martínez-López J.N.I., Fresan A., TovillaZaráte C.A., Nolasco-Rosales G.A., Juárez-De la Cruz G.I., Ramos D.R., Villar-Soto M., … Nicolini H. Exploring the relationship between telomere length and cognitive changes in post-COVID-19 subjects. Biomedicines. 2024;12(10):2296. doi: 10.3390/biomedicines12102296
59. Virseda-Berdices A., Behar-Lagares R., Martínez-González O., Blancas R., Bueno-Bustos S., Brochado-Kith O., Manteiga E., Mallol Poyato M.J., López Matamala B., Martín Parra C., … Fernández-Rodríguez A. Longer ICU stay and invasive mechanical ventilation accelerate telomere shortening in COVID-19 patients 1 year after recovery. Crit. Care. 2024;28(1):267. doi: 10.1186/s13054-024-05051-6
60. Lakhtin V.M., Lakhtin M.V., Melikhova A.V., Davydkin V.Yu., Kombarova S.Yu. Supervision of patients 65 + with asymptomatic COVID-19: accelerated course of pathologies. Topical issues of preventive medicine and sanitary and epidemiological well-being of the population: factors, technologies, management and risk assessment: proc. conf., Nizhny Novgorod, June 7–8, 2022. Nizhny Novgorod: Medial, 2022. P. 272–276. [In Russian].
61. Fu S., Song X. The clinical and immunological features of alopecia areata following SARSCoV-2 infection or COVID-19 vaccines. Expert. Opin. Ther. Targets. 2024;28(4):273–282. doi: 10.1080/14728222.2024.2344696
62. Gritskova I.A., Ponomarenko I.G., Cherkashina I.V. Alopecia and COVID-19: possible etiopathogenetic variants and therapeutic approach. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury = Problems of Balneology, Physiotherapy, and Exercise Therapy. 2023;100(5):56–63. [In Russian]. doi: 10.17116/kurort202310005156
63. Ergashev O.N. 1.1. Development of gerontology and improving the quality of life of citizens of the older generation in St. Petersburg: interaction of state authorities, scientific and professional communities, public organizations. Uspekhi gerontologii = Advances in Gerontology. 2022; 35(1):146. [In Russian].
64. Anisimov V.N., Ergashev O.N., Finagentov A.V., Bordovsky G.A., Kabanov M.Yu. Structure and main stages of the process of long-term state support for citizens of the older generation. Uspekhi gerontologii = Advances in Gerontology. 2022; 35(1):10–24. [In Russian]. doi: 10.34922/AE.2022.35.1.001
65. Pawelec G., Barnett Y., Forsey R., Frasca D., Globerson A., McLeod J., Caruso C., Franceschi C., Fülöp T., Gupta S., Mariani E., Mocchegiani E., Solana R. T cells and aging, January 2002 update. Front. Biosci. 2002;7:d1056–183. doi: 10.2741/a831
66. Pawelec G. Age and immunity: What is “immunosenescence”? Exp. Gerontol. 2018;105:4–9. doi: 10.1016/j.exger.2017.10.024
67. Mayya V., Judokusumo E., Abu-Shah E., Neiswanger W., Sachar C., Depoil D., Kam L.C., Dustin M.L. Cutting edge: synapse propensity of human memory CD8 T cells confers competitive advantage over naive counterparts. J. Immunol. 2019;203(3):601– 606. doi: 10.4049/jimmunol.1801687
68. Francavilla F., Intranuovo F., La Spada G., Lacivita E., Catto M., Graps E.A., Altomare C.D. Inflammaging and immunosenescence in the postCOVID era: small molecules, big challenges. Chem. Med. Chem. 2025;20(6):e202400672. doi: 10.1002/cmdc.202400672
69. Teissier T., Boulanger E., Cox L.S. Interconnections between inflammageing and immunosenescence during ageing. Cells. 2022;11(3):359. doi: 10.3390/cells11030359
70. Müller L., di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front. Immunol. 2023;14:1298004. doi: 10.3389/fimmu.2023.1298004
Review
JATS XML






























