Preview

Сибирский научный медицинский журнал

Advanced search

THE SEARCH FOR GENE MUTATIONS AT CYSTIC FIBROSIS IN CHILDREN BY THE METHOD OF HIGH-RESOLUTION MELTING ANALYSIS

https://doi.org/10.15372/SSMJ20180202

Abstract

High-resolution melting analysis (HRMA) is promising for preliminary scanning of the nucleotide sequence of the cystic fibrosis transmembrane conductance regulator gene ( CFTR ), which mutations are responsible for the development of cystic fibrosis. In Russia this method has not yet found practical application. The aim of this work was the analysis of the efficiency of the HRMA method at the first stage of molecular diagnostics of cystic fibrosis in children. Materials and methods. In order to validate the new technique for extended molecular genetic analysis we examined 43 control DNA samples obtained from children with confirmed cystic fibrosis diagnosis and known CFTR mutations. Results. The specificity of cystic fibrosis molecular diagnostics with the implementation of the HRMA method was 100 %, the sensitivity was 97.3 %. In two samples with extended heterozygous deletion of the 2nd and 3rd exons melting patterns were identical to the wild type ones. Conclusions. The high efficiency of the HRMA method proves the possibility of its usefulness in clinical practice at the first stage of cystic fibrosis molecular diagnostics in children toward the reduction of the diagnostic search duration. In most cases this method allows to determine CFTR gene mutation type. Long deletions/insertions and complex heterozygous restructurings still cannot be detected using HRMA. Multiplex ligation-dependent probe amplification is required to determine this mutation type.

About the Authors

M. Y. Donnikov
Surgut State University
Russian Federation


V. V. Meshcheryakov
Surgut State University
Russian Federation


References

1. Красовский С.А., Каширская Н.Ю., Черняк А.В., Амелина Е.Л., Петрова Н.В., Поляков А.В., Кондратьева Е.И., Воронкова А.Ю., Усачева М.В., Адян Т.А., Степанова А.А., Алимова И.Л., Ашерова И.К., Байкова Г.В., Басилая А.В., Бойцова Е.В., Борисов А.В., Брисин В.Ю., Васильева Е.А., Васильева Т.Г., Водовозова Э.В., Воронин С.В., Гаймоленко И.Н., Голубцова О.И., Горинова Ю.В., Назаренко Л.П., Одинокова О.Н., Гембицкая Т.Е., Никонова В.С., Дьячкова А.А., Сергиенко Д.Ф., Енина Е.А., Ерзутова М.В., Зинченко Ю.С., Зоненко О.Г., Иванова Д.М., Ильенкова Н.А., Кадырова Д.В. Генетическая характеристика больных муковисцидозом в Российской Федерации по данным Национального регистра (2014 г.) // Пульмонология. 2016. 26. (2). 133-151.

2. Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия» / ред. Е.И. Кондратьева, Н.Ю. Каширская, Н.И. Капранов. М.: Компания БОРГЕС, 2016. 205 с.

3. Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. М.: Медиа Сфера, 2002. 312 с.

4. Солдатов А.А., Авдеева Ж.И., Алпатова Н.А., Олефир Ю.В., Бондарев В.П., Лысикова С.Л. Орфанные препараты для лечения редких болезней // Сиб. науч. мед. журн. 2017. (2). 27-35.

5. Audrezet M.P., Dabricot A., Le Marechal C., Ferec C. Validation of high-resolution DNA melting analysis for mutation scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene // J. Mol. Diag. 2008. 10. 424-434.

6. Bareil C., Guittard C., Altieri J.P., Templin C., Claustres M., des Georges M. Comprehensive and rapid genotyping of mutations and haplotypes in congenital bilateral absence of vas deferens and other cystic fibrosis transmembrane conductance regulator-related disorders // J. Mol. Diagn. 9. (5). 582-588.

7. Castellani C. CFTR2: how will it help care? // Paediatr. Respir. Rev. 2013. 14. 2-5.

8. Chambliss A.B., Resnick M., Petrides A.K., Clarke W.A., Marzinke M.A. Rapid screening for targeted genetic variants via high-resolution melting curve analysis // Clin. Chem. Lab. Med. 2017. 55. (4). 507-516.

9. Cohen T.S., Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome // Nat. Med. 2012. 18. (4). 509-519.

10. Chou L., Lyon E., Wittwer C.T. A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: cystic fibrosis transmembrane conductance regulator gene as a model // Am. J. Clin. Pathol. 2005. 124. (3). 330-338.

11. Fanen P., Wohlhuter-Haddad A., Hinzpetera A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies // Int. J. Biochem. Cell Biol. 2014. 52. 94-102.

12. Farrell P.M., White T.B., Ren C.L., Hempstead S.E., Accurso F., Derichs N., Howenstine M. Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation // J. Pediatr. 2017. 181. 4-15.

13. Gonzalez-Bosquet J., Calcei J., Wei J.S., Garcia-Closas M., Sherman M.E., Hewitt S., Vockley J., Lissowska J., Yang H.P., Khan J., Chanock S. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers // PLoS One. 2011. 6. (1). e14522.

14. Cooper G.M., Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data // Nat. Rev. Genet. 2011. 12. 628-640.

15. Herrmann M.G., Durtschi J.D., Bromley L.K., Wittwer C.T., Voelkerding K.V. Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes // Clin. Chem. 2006. 52. (3). 494-503.

16. Kerem B., Rommens J.M., Buchanan J.A., Markiewicz D., Cox T.K., Chakravarti A., Buchwald M., Tsui L.C. Identification of the cystic fibrosis gene: genetic analysis // Science. 1989. 245. (4922). 1073-1080.

17. Li B.S., Wang X.Y., Ma F.L., Jiang B., Song X.X., Xu A.G. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis // PLoS One. 2011. 6. (12). е28078.

18. Liew M., Pryor R., Palais R., Meadows C., Erali M., Lyon E., Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons // Clin. Chem. 2004. 50. (7). 1156-6417.

19. Lim R.M., Silver A.J., Silver M.J., Borroto C., Spurrier B., Petrossian T.C., Larson J.L., Silver L.M. Targeted mutation screening panels expose systematic population bias in detection of cystic fibrosis risk // Genet. Med. 2016. 18. (2). 174-179.

20. Montgomery J., Wittwer C.T., Kent J., Zhou L. Scanning the cystic fibrosis transmembrane conductance regulator gene using high-resolution DNA melting analysis // Clin. Chem. 2007. 53. (11). 1891-1898.

21. Montgomery J.L., Sanford L.N., Wittwer C.T. High-resolution DNA melting analysis in clinical research and diagnostics // Expert Rev. Mol. Diagn. 2010. 10. (2). 219-240.

22. Pagin А., Devos А., Figeac М., Truant М., Willoquaux Сh., Broly F., Lalau G. Applicability and efficiency of NGS in routine diagnosis: In-depth performance analysis of a complete workflow for CFTR mutation analysis // PLoS One. 2016. 11. (2). e014942620.

23. Population variation of common cystic fibrosis mutations. The Cystic Fibrosis Genetic Analysis Consortium // Hum. Mutat. 1994. 4. 167-177.

24. Pryor R.J., Myrick J.T., Palais R.A., Sundberg S.O., Paek J.Y., Wittwer C.T., Knight I.T. High-speed melting analysis: The effect of melting rate on small amplicon microfluidic genotyping // Clin. Chem. 2017. 63. (10). 1624-1632.

25. Singh R.R., Bains A., Patel K.P., Rahimi H., Barkoh B.A., Paladugu A. Detection of high-frequency and novel DNMT3A mutations in acute myeloid leukemia by high-resolution melting curve analysis // J. Mol. Diagn. 2012. 14. 336-345.

26. Sosnay P.R., Salinas D.B., White T.B., Ren C.L., Farrell P.M., Raraigh K.S., Girodon E., Castellani C. Applying cystic fibrosis transmembrane conductance regulator genetics and CFTR2 data to facilitate diagnoses // J. Pediatr. 2017. 181. S27-S32.

27. Svensson A.M. Detection of large rearrangements in the cystic fibrosis transmembrane conductance regulator gene by multiplex ligation-dependent probe amplification assay when sequencing fails to detect two disease-causing mutations // Genet. Test. Mol. Biomarkers. 2010. 14. 171-174.

28. Vandersteen J., Bayrak-Toydemir P., Palais R., Wittwer C.T. Identifying common genetic variants by high-resolution melting // Clin. Chem. 2007. 53. (7). 1191-1198.

29. Wittwer C.T., Reed G.H., Gundry C.N., Vandersteen J.G., Pryor R.J. High-resolution genotyping by amplicon melting analysis using LCGreen // Clin. Chem. 2003. 49. 853-860.


Review

For citations:


Donnikov M.Y., Meshcheryakov V.V. THE SEARCH FOR GENE MUTATIONS AT CYSTIC FIBROSIS IN CHILDREN BY THE METHOD OF HIGH-RESOLUTION MELTING ANALYSIS. Сибирский научный медицинский журнал. 2018;38(2):13-21. (In Russ.) https://doi.org/10.15372/SSMJ20180202

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)