Preview

Сибирский научный медицинский журнал

Advanced search

Dose–response relationship in the modeling acute toxic hepatitis in vivo as a basis for identifying new correction strategies

https://doi.org/10.18699/SSMJ20250212

Abstract

The exposure to chemical substances remains a priority risk factor for the health of the working population in the chemical, petrochemical, and pharmaceutical industries. The liver, as the primary organ of detoxification, is a primary target for many chemical agents, highlighting the necessity for in-depth studies of the pathogenetic mechanisms underlying its toxic damage. Understanding the temporal dynamics of changes in molecular-genetic and biochemical markers will enable more accurate determination of disease stages, prediction of disease progression, and formulation of pharmacological correction strategies. The aim of this study is to investigate the dynamics of changes in biochemical and molecular-genetic markers of damage when modeling acute toxic hepatitis at varying levels of toxic exposure.
Material and methods. This work is based on data obtained from an experimental in vivo study, during which acute toxic hepatitis was modeled in outbred male rats aged 12–14 weeks and weighing 200–220 g using carbon tetrachloride, a widely used hepatotoxic agent in research settings. After 24 and 72 h of exposure, we assessed changes in the activity of key “liver” enzymes and in the expression of genes associated with antioxidant defense, the glutathione system, apoptosis regulation, and cell death.
Results and discussion. In the first 24 h of carbon tetrachloride exposure, there was a statistically significant increase in alanine aminotransferase and aspartate aminotransferase activity, as well as a lesser extent increase in lactate dehydrogenase and alkaline phosphatase activity. After 72 h, changes in biochemical markers became more pronounced. The expression of studied genes changed ambiguously. In the dose-response relationship, differences were observed between the 24- and 72-hour periods, with steeper slopes for several biomarkers during the first 24 h.
Conclusions. The data obtained in this study may contribute to and serve as a potential basis for developing strategies for pharmacological correction of toxic liver damage.

About the Authors

Yu. V. Ryabova
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

Yulia V. Ryabova, candidate of medical sciences 

450106, Ufa, Stepana Kuvykina st., 94



D. O. Karimov
Ufa Research Institute of Occupational Health and Human Ecology; National Research Institute of Public Health named after N.A. Semashko
Russian Federation

Denis O. Karimov, candidate of medical sciences 

450106, Ufa, Stepana Kuvykina st., 94

105064, Moscow, Vorontsovo Pole st., 12/1 



E. F. Repina
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

 Elvira F. Repina, candidate of medical sciences 

450106, Ufa, Stepana Kuvykina st., 94



T. G. Yakupova
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

 Tatyana G. Yakupova 

450106, Ufa, Stepana Kuvykina st., 94



N. Yu. Khusnutdinova
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

 Nadezhda Yu. Khusnutdinova 

450106, Ufa, Stepana Kuvykina st., 94



D. A. Smolyankin
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

Denis A. Smolyankin 

450106, Ufa, Stepana Kuvykina st., 94



References

1. Bonventre J.V., Yang L. Injury biomarkers in toxicology. In: Comprehensive toxicology. 2nd ed. Elsevier; 2010. P. 679–704.

2. Glinghammar В., Rafter I., Lindstróm A.K., Hedberg J.J., Andersson H.B., Lindblom P., Berg A.L., Cotgreave I. Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int. J. Mol. Med. 2009;23(5):621–631. doi: 10.3892/ijmm_00000173

3. Green R.M., Flamm S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology. 2002;123(4):1367–1384. doi: 10.1053/gast.2002.36061

4. de Vos A., de Troyer R., Stove C. Chapter 57 – Biomarkers of alcohol misuse. Neuroscience of Alcohol. 2019;12:557–565. doi: 10.1016/b978-0-12-813125-1.00057-x

5. Sookoian S., Pirola C.J. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J. Gastroenterol. 2015;21(3):711–725. doi: 10.3748/wjg.v21.i3.711

6. Liu Y., Luo C., Li T., Zhang W., Zong Z., Liu X., Deng H. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth. J. Proteome Res. 2021;20(5):2596–2606. doi: 10.1021/acs.jproteome.0c01037

7. Botros M., Sikaris K.A. The de ritis ratio: the test of time. Clin. Biochem. Rev. 2013;34(3):117–130.

8. Moriles K.E., Zubair M., Azer S.A. Alanine aminotransferase (ALT) test. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing, 2024.

9. Miao P., Sheng S., Sun X., Liu J., Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65(11):904–910. doi: 10.1002/iub.1216

10. Sherrid M.V., Barac I., McKenna W.J., Elliott P.M., Dickie S., Chojnowska L., Casey S., Maron B.J. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2005;45(8):1251–1258. doi: 10.1016/j.jacc.2005.01.012

11. Kounalakis N., Goydos J.S. Tumor cell and circulating markers in melanoma: diagnosis, prognosis, and management. Curr. Oncol. Rep. 2005;7(5):377–382. doi: 10.1007/s11912-005-0065-2

12. Puranik N., Parihar A., Raikwar J., Khandia R. Lactate dehydrogenase a potential diagnostic biomarker for cancer: a review of literature. BJSTR. 2021;38(3):30426–30432. doi: 10.26717/BJSTR.2021.38.006164

13. Khan A.A., Allemailem K.S., Alhumaydhi F.A., Gowder S.J.T., Rahmani A.H. The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug Targets. 2020;20(6):855–868. doi: 10.2174/1871530320666191230141110

14. Kotoh K., Kato M., Kohjima M., Tanaka M., Miyazaki M., Nakamura K., Enjoji M., Nakamuta M., Takayanagi R. Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Exp. Ther. Med. 2011;2(2):195–199. doi: 10.3892/etm.2011.197

15. Sharma U., Pal D., Prasad R. Alkaline phosphatase: an overview. Indian J. Clin. Biochem. 2014;29(3):269–278. doi: 10.1007/s12291-013-0408-y

16. Siller A.F., Whyte M.P. Alkaline phosphatase: Discovery and naming of our favorite enzyme. J. Bone Miner. Res. 2018;33(2):362–364. doi: 10.1002/jbmr.3225

17. Ngo V., Duennwald M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants (Basel). 2022;11(12):2345. doi: 10.3390/antiox11122345

18. Poss K.D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA. 1997;94(20):10925–10930. doi: 10.1073/pnas.94.20.10925

19. Mohar I., Botta D., White C.C., McConnachie L.A., Kavanagh T.J. Glutamate cysteine ligase (GCL) transgenic and gene-targeted mice for controlling glutathione synthesis. Curr. Protoc. Toxicol. 2009;6(16):16. doi: 10.1002/0471140856.tx0616s39

20. Nebert D.W., Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum. Genomics. 2004;1(6):460. doi: 10.1186/1479-7364-1-6-460

21. Soto J.L., Cabrera C.M., Serrano S., López-Nevot M.A. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer. 2005;5:36. doi: 10.1186/1471-2407-5-36

22. Chung I., Leonhardt H., Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J. Cell. Sci. 2011;124(Pt 21):3603–3618. doi: 10.1242/jcs.084681

23. Cuny G.D., Degterev A. RIPK protein kinase family: Atypical lives of typical kinases. Semin. Cell Dev. Biol. 2021;109:96–105. doi: 10.1016/j.semcdb.2020.06.014

24. McIlwain D.R., Berger T., Mak T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013;5(4):a008656. doi: 10.1101/cshperspect.a008656

25. Kim H.J., Odend’hal S., Bruckner J.V. Effect of oral dosing vehicles on the acute hepatotoxicity of carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 1990;102(1):34–49. doi: 10.1016/0041-008x(90)90081-5

26. Zhang Y.X., Li C., Liang X.R., Jin J.Q., Zhang Y., Xu F., Guan J., Ma Y.Y., Ma X.N., Liu R.K., Fu J.H. Role of 5-HT degradation in acute liver injury induced by carbon tetrachloride. Eur. J. Pharmacol. 2021;908:174355. doi: 10.1016/j.ejphar.2021.174355

27. Atawia R.T., Esmat A., Elsherbiny D.A., El-Demerdash E. Telmisartan ameliorates carbon tetrachloride-induced acute hepatotoxicity in rats. Environ Toxicol. 2017;32(2):359–370. doi: 10.1002/tox.22240

28. van Wijk R., Tans S.J., ten Wolde P.R., Mashaghi A. Non-monotonic dynamics and crosstalk in signaling pathways and their implications for pharmacology. Sci. Rep. 2015;5:11376. doi: 10.1038/srep11376

29. Ramaiah L., Hinrichs M.J., Skuba E.V., Iverson W.O., Ennulat D. Interpreting and integrating clinical and anatomic pathology results. Toxicol. Pathol. 2017;45(1):223–237. doi: 10.1177/0192623316677068

30. Unsal V., Cicek M., Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health. 2020;36(2):279–295. doi: 10.1515/reveh-2020-0048

31. Yu Y., Cui Y., Niedernhofer L.J., Wang Y. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem. Res. Toxicol. 2016;29(12):2008–2039. doi: 10.1021/acs.chemrestox.6b00265

32. Sikalidis A.K., Mazor K.M., Lee J.I., Roman H.B., Hirschberger L.L., Stipanuk M.H. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits. Amino Acids. 2014;46(5):1285–1296. doi: 10.1007/s00726-014-1687-1

33. Mazari A.M.A., Zhang L., Ye Z.W., Zhang J., Tew K.D., Townsend D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules. 2023;13(4):688. doi: 10.3390/biom13040688

34. Malaguarnera G., Cataudella E., Giordano M., Nunnari G., Chisari G., Malaguarnera M. Toxic hepatitis in occupational exposure to solvents. World J. Gastroenterol. 2012;18(22):2756–2766. doi: 10.3748/wjg.v18.i22.2756

35. Bergmann A., Steller H. Apoptosis, stem cells, and tissue regeneration. Sci. Signal. 2010;3(145):re8. doi: 10.1126/scisignal.3145re8

36. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94(3):909–950. doi: 10.1152/physrev.00026.2013


Review

For citations:


Ryabova Yu.V., Karimov D.O., Repina E.F., Yakupova T.G., Khusnutdinova N.Yu., Smolyankin D.A. Dose–response relationship in the modeling acute toxic hepatitis in vivo as a basis for identifying new correction strategies. Сибирский научный медицинский журнал. 2025;45(2):113-123. (In Russ.) https://doi.org/10.18699/SSMJ20250212

Views: 516


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)