Dose–response relationship in the modeling acute toxic hepatitis in vivo as a basis for identifying new correction strategies
https://doi.org/10.18699/SSMJ20250212
Abstract
The exposure to chemical substances remains a priority risk factor for the health of the working population in the chemical, petrochemical, and pharmaceutical industries. The liver, as the primary organ of detoxification, is a primary target for many chemical agents, highlighting the necessity for in-depth studies of the pathogenetic mechanisms underlying its toxic damage. Understanding the temporal dynamics of changes in molecular-genetic and biochemical markers will enable more accurate determination of disease stages, prediction of disease progression, and formulation of pharmacological correction strategies. The aim of this study is to investigate the dynamics of changes in biochemical and molecular-genetic markers of damage when modeling acute toxic hepatitis at varying levels of toxic exposure.
Material and methods. This work is based on data obtained from an experimental in vivo study, during which acute toxic hepatitis was modeled in outbred male rats aged 12–14 weeks and weighing 200–220 g using carbon tetrachloride, a widely used hepatotoxic agent in research settings. After 24 and 72 h of exposure, we assessed changes in the activity of key “liver” enzymes and in the expression of genes associated with antioxidant defense, the glutathione system, apoptosis regulation, and cell death.
Results and discussion. In the first 24 h of carbon tetrachloride exposure, there was a statistically significant increase in alanine aminotransferase and aspartate aminotransferase activity, as well as a lesser extent increase in lactate dehydrogenase and alkaline phosphatase activity. After 72 h, changes in biochemical markers became more pronounced. The expression of studied genes changed ambiguously. In the dose-response relationship, differences were observed between the 24- and 72-hour periods, with steeper slopes for several biomarkers during the first 24 h.
Conclusions. The data obtained in this study may contribute to and serve as a potential basis for developing strategies for pharmacological correction of toxic liver damage.
Keywords
About the Authors
Yu. V. RyabovaRussian Federation
Yulia V. Ryabova, candidate of medical sciences
450106, Ufa, Stepana Kuvykina st., 94
D. O. Karimov
Russian Federation
Denis O. Karimov, candidate of medical sciences
450106, Ufa, Stepana Kuvykina st., 94
105064, Moscow, Vorontsovo Pole st., 12/1
E. F. Repina
Russian Federation
Elvira F. Repina, candidate of medical sciences
450106, Ufa, Stepana Kuvykina st., 94
T. G. Yakupova
Russian Federation
Tatyana G. Yakupova
450106, Ufa, Stepana Kuvykina st., 94
N. Yu. Khusnutdinova
Russian Federation
Nadezhda Yu. Khusnutdinova
450106, Ufa, Stepana Kuvykina st., 94
D. A. Smolyankin
Russian Federation
Denis A. Smolyankin
450106, Ufa, Stepana Kuvykina st., 94
References
1. Bonventre J.V., Yang L. Injury biomarkers in toxicology. In: Comprehensive toxicology. 2nd ed. Elsevier; 2010. P. 679–704.
2. Glinghammar В., Rafter I., Lindstróm A.K., Hedberg J.J., Andersson H.B., Lindblom P., Berg A.L., Cotgreave I. Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int. J. Mol. Med. 2009;23(5):621–631. doi: 10.3892/ijmm_00000173
3. Green R.M., Flamm S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology. 2002;123(4):1367–1384. doi: 10.1053/gast.2002.36061
4. de Vos A., de Troyer R., Stove C. Chapter 57 – Biomarkers of alcohol misuse. Neuroscience of Alcohol. 2019;12:557–565. doi: 10.1016/b978-0-12-813125-1.00057-x
5. Sookoian S., Pirola C.J. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J. Gastroenterol. 2015;21(3):711–725. doi: 10.3748/wjg.v21.i3.711
6. Liu Y., Luo C., Li T., Zhang W., Zong Z., Liu X., Deng H. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth. J. Proteome Res. 2021;20(5):2596–2606. doi: 10.1021/acs.jproteome.0c01037
7. Botros M., Sikaris K.A. The de ritis ratio: the test of time. Clin. Biochem. Rev. 2013;34(3):117–130.
8. Moriles K.E., Zubair M., Azer S.A. Alanine aminotransferase (ALT) test. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing, 2024.
9. Miao P., Sheng S., Sun X., Liu J., Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65(11):904–910. doi: 10.1002/iub.1216
10. Sherrid M.V., Barac I., McKenna W.J., Elliott P.M., Dickie S., Chojnowska L., Casey S., Maron B.J. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2005;45(8):1251–1258. doi: 10.1016/j.jacc.2005.01.012
11. Kounalakis N., Goydos J.S. Tumor cell and circulating markers in melanoma: diagnosis, prognosis, and management. Curr. Oncol. Rep. 2005;7(5):377–382. doi: 10.1007/s11912-005-0065-2
12. Puranik N., Parihar A., Raikwar J., Khandia R. Lactate dehydrogenase a potential diagnostic biomarker for cancer: a review of literature. BJSTR. 2021;38(3):30426–30432. doi: 10.26717/BJSTR.2021.38.006164
13. Khan A.A., Allemailem K.S., Alhumaydhi F.A., Gowder S.J.T., Rahmani A.H. The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug Targets. 2020;20(6):855–868. doi: 10.2174/1871530320666191230141110
14. Kotoh K., Kato M., Kohjima M., Tanaka M., Miyazaki M., Nakamura K., Enjoji M., Nakamuta M., Takayanagi R. Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Exp. Ther. Med. 2011;2(2):195–199. doi: 10.3892/etm.2011.197
15. Sharma U., Pal D., Prasad R. Alkaline phosphatase: an overview. Indian J. Clin. Biochem. 2014;29(3):269–278. doi: 10.1007/s12291-013-0408-y
16. Siller A.F., Whyte M.P. Alkaline phosphatase: Discovery and naming of our favorite enzyme. J. Bone Miner. Res. 2018;33(2):362–364. doi: 10.1002/jbmr.3225
17. Ngo V., Duennwald M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants (Basel). 2022;11(12):2345. doi: 10.3390/antiox11122345
18. Poss K.D., Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. USA. 1997;94(20):10925–10930. doi: 10.1073/pnas.94.20.10925
19. Mohar I., Botta D., White C.C., McConnachie L.A., Kavanagh T.J. Glutamate cysteine ligase (GCL) transgenic and gene-targeted mice for controlling glutathione synthesis. Curr. Protoc. Toxicol. 2009;6(16):16. doi: 10.1002/0471140856.tx0616s39
20. Nebert D.W., Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum. Genomics. 2004;1(6):460. doi: 10.1186/1479-7364-1-6-460
21. Soto J.L., Cabrera C.M., Serrano S., López-Nevot M.A. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer. 2005;5:36. doi: 10.1186/1471-2407-5-36
22. Chung I., Leonhardt H., Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J. Cell. Sci. 2011;124(Pt 21):3603–3618. doi: 10.1242/jcs.084681
23. Cuny G.D., Degterev A. RIPK protein kinase family: Atypical lives of typical kinases. Semin. Cell Dev. Biol. 2021;109:96–105. doi: 10.1016/j.semcdb.2020.06.014
24. McIlwain D.R., Berger T., Mak T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013;5(4):a008656. doi: 10.1101/cshperspect.a008656
25. Kim H.J., Odend’hal S., Bruckner J.V. Effect of oral dosing vehicles on the acute hepatotoxicity of carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 1990;102(1):34–49. doi: 10.1016/0041-008x(90)90081-5
26. Zhang Y.X., Li C., Liang X.R., Jin J.Q., Zhang Y., Xu F., Guan J., Ma Y.Y., Ma X.N., Liu R.K., Fu J.H. Role of 5-HT degradation in acute liver injury induced by carbon tetrachloride. Eur. J. Pharmacol. 2021;908:174355. doi: 10.1016/j.ejphar.2021.174355
27. Atawia R.T., Esmat A., Elsherbiny D.A., El-Demerdash E. Telmisartan ameliorates carbon tetrachloride-induced acute hepatotoxicity in rats. Environ Toxicol. 2017;32(2):359–370. doi: 10.1002/tox.22240
28. van Wijk R., Tans S.J., ten Wolde P.R., Mashaghi A. Non-monotonic dynamics and crosstalk in signaling pathways and their implications for pharmacology. Sci. Rep. 2015;5:11376. doi: 10.1038/srep11376
29. Ramaiah L., Hinrichs M.J., Skuba E.V., Iverson W.O., Ennulat D. Interpreting and integrating clinical and anatomic pathology results. Toxicol. Pathol. 2017;45(1):223–237. doi: 10.1177/0192623316677068
30. Unsal V., Cicek M., Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health. 2020;36(2):279–295. doi: 10.1515/reveh-2020-0048
31. Yu Y., Cui Y., Niedernhofer L.J., Wang Y. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem. Res. Toxicol. 2016;29(12):2008–2039. doi: 10.1021/acs.chemrestox.6b00265
32. Sikalidis A.K., Mazor K.M., Lee J.I., Roman H.B., Hirschberger L.L., Stipanuk M.H. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits. Amino Acids. 2014;46(5):1285–1296. doi: 10.1007/s00726-014-1687-1
33. Mazari A.M.A., Zhang L., Ye Z.W., Zhang J., Tew K.D., Townsend D.M. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules. 2023;13(4):688. doi: 10.3390/biom13040688
34. Malaguarnera G., Cataudella E., Giordano M., Nunnari G., Chisari G., Malaguarnera M. Toxic hepatitis in occupational exposure to solvents. World J. Gastroenterol. 2012;18(22):2756–2766. doi: 10.3748/wjg.v18.i22.2756
35. Bergmann A., Steller H. Apoptosis, stem cells, and tissue regeneration. Sci. Signal. 2010;3(145):re8. doi: 10.1126/scisignal.3145re8
36. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94(3):909–950. doi: 10.1152/physrev.00026.2013
Review
For citations:
Ryabova Yu.V., Karimov D.O., Repina E.F., Yakupova T.G., Khusnutdinova N.Yu., Smolyankin D.A. Dose–response relationship in the modeling acute toxic hepatitis in vivo as a basis for identifying new correction strategies. Сибирский научный медицинский журнал. 2025;45(2):113-123. (In Russ.) https://doi.org/10.18699/SSMJ20250212