Influence of microbiological characteristics of infections caused by Klebsiella pneumoniae on antibiotic resistance and severity of the infection process
https://doi.org/10.18699/SSMJ20250209
Abstract
The aim of the study was to investigate influence of microbiological characteristics of infections caused by Klebsiella pneumonia on formation of antibiotic resistance and severity of infectious process.
Material and methods. A comparative analysis of biofilm mass, thickness of capsule of K. pneumonia isolated from 26 patients with sepsis and from 8 patients with chronic obstructive pulmonary disease was carried out. The influence of capsule thickness on severity of infectious process and antibiotic resistance was studied.
Results and discussion. The mass of K. pneumoniae biofilm isolated from patients with sepsis was 28.2 [16.5; 41.3] μg/well (median [lower quartile; upper quartile]), exhibited resistance to most of the antibacterial drugs used, and was greater than the biofilm mass isolated from patients with chronic obstructive pulmonary disease (24.3 [20.0; 28.2] μg/well, p = 0.04), which remained susceptible to the drugs used. K. pneumoniae bacterial capsule was identified as a species characteristic or pathogenicity property using developed method with alcian blue. Panresistant K. pneumoniae isolates had the thickest capsule (0,44 [0,32; 0,53] μm), carbapenem-resistant isolates sensitive to colistin and tigecycline had thinner capsule (0.38; 0.35–0.41 μm). Thickness of capsule of Klebsiella that retained sensitivity to carbapenems was 4 and 3.5 times thinner than thickness of panresistant (p = 0,031) and carbapenem-resistant isolates sensitive to colistin and tigecycline isolates (p = 0,044), respectively and was 0,11 [0,08; 0,16 мкм]. A positive correlation was revealed between thickness of capsule, mass of microbial biofilm and length of hospital stay.
Conclusions. The pathogenicity of bacteria and severity of disease are explained by thickness of K. pneumoniae capsule that makes a certain contribution to formation of antibiotic resistance in microorganisms.
About the Authors
V. Yu. ZemkoBelarus
Viktoryia Yu. Zemko, candidate of medical sciences
Republic of Belarus, 210009, Vitebsk, Frunze ave., 27
V. K. Okulich
Belarus
Vitaly K. Okulich, candidate of medical sciences
Republic of Belarus, 210009, Vitebsk, Frunze ave., 27
References
1. Voora S., Adey D.B. Management of Kidney transplant recipients by general nephrologists: core curriculum 2019. Am. J. Kidney Dis. 2019;73(6):866–879. doi: 10.1053/j.ajkd.2019.01.031
2. Koo H., Allan R.N., Howlin R.P., Stoodley P., Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017;15(12):740–755. doi: 10.1038/nrmicro.2017.99
3. Pinto R.M., Soares F.A., Reis S., Nunes C., van Dijck P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms. Front. Microbiol. 2020;11:952. doi: 10.3389/fmicb.2020.00952
4. Navon-Venezia S., Kondratyeva K., Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017;41(3):252–275. doi: 10.1093/femsre/fux013
5. Verderosa A.D., Totsika M., FairfullSmith K.E. Bacterial biofilm eradication agents: a current review. Front. Chem. 2019;7:824. doi: 10.3389/fchem.2019.00824
6. Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.F., Alarcon E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. doi: 10.1016/j.heliyon.2018.e01067
7. Satpathy S., Sen S.K., Pattanaik S., Raut S. Review on bacterial biofilm: an universal cause of contamination. Biocatal. Agric. Biotechnol. 2016;7:56–66. doi: 10.1016/j.bcab.2016.05.002
8. Lajhar S.A., Brownlie J., Barlow R. Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiol. 2018;18(1):41. doi: 10.1186/s12866-018-1182-z
9. Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015;7(4):493–512. doi: 10.4155/fmc.15.6
10. Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019;32(3):e00001-19. doi: 10.1128/CMR.00001-19
11. Gharrah M.M., El-Mahdy A.M., Barwa R.F. Association between virulence factors and extended spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates. Interdiscip. Perspect. Infect. Dis. 2017:2017:7279830. doi: 10.1155/2017/7279830
12. Follador R., Heinz E., Wyres K.L., Ellington M.J., Kowarik M., Holt K.E., Thomson N.R. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb. Genom. 2016;2(8):e000073. doi: 10.1099/mgen.0.000073
13. Paczosa M.K., Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016;80(3):629–661. doi: 10.1128/MMBR.00078-15
14. Sharma D., Misba L., Khan A.U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019;8:76. doi: 10.1186/s13756-019-0533-3
15. Celec P., Vlkova B., Laukova L., Babickova J., Boor P. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert. Rev. Mol. Med. 2018;20:e1. doi: 10.1017/erm.2017.12
16. Selasi G.N., Nicholas A., Jeon H., Na S.H., Kwon H.I., Kim Y.J., Heo S.T., Oh M.H., Lee J.C. Differences in biofilm mass, expression of biofilm-associated genes, and resistance to desiccation between epidemic and sporadic clones of carbapenem-resistant acinetobacter baumannii sequence type 191. PLoS One. 2016;11(9):e0162576. doi: 10.1371/journal.pone.0162576
17. Zemko V.Yu., Okulich V.K., Bontsevich S.V. Method for identifying meeting capsules using Alcian blue: rationalization proposal No. 6 dated June 10, 2022, approved by Vitebsk State Medical University. [In Russian].
18. D’Angelo F., Rocha E.P.C., Rendueles O. The capsule increases susceptibility to last-resort polymyxins, but not to other antibiotics, in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2023;67(4):e00127–23. doi: 10.1128/aac.00127-23
19. Ernst C.M., Braxton J.R., Rodriguez-Osorio C.A., Zagieboylo A.P., Li L., Pironti A., Manson A.L., Nair A.V., Benson M., Cummins K. … Hung D.T. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumonia. Nat. Med. 2020;26(5):705–711. doi: 10.1038/s41591-020-0825-4
20. Chen T., Ying L., Xiong L., Wang X., Lu P., Wang Y., Shen P., Xiao Y. Understanding carbapenem-resistant hypervirulent Klebsiella pneumoniae: Key virulence factors and evolutionary convergence. hLife. 2024:12(2):611–624. doi: 10.1016/j.hlife.2024.06.005