Preview

Сибирский научный медицинский журнал

Advanced search

Three-dimensional models of the brachial plexus as the basis of augmented reality and artificial transplants

https://doi.org/10.18699/SSMJ20250208

Abstract

In case of complex injuries to the nerves of the upper limb during surgery in augmented reality and when creating artificial transplants, knowledge of the three-dimensional structure of the brachial plexus is necessary. The aim of this study is to develop a method for manufacturing maximally detailed and accurate hollow three-dimensional models of the brachial plexus from photopolymer resins.
Material and methods. Using the developed technique, all elements of the right brachial plexus were dissected and isolated from 10 corpses of men and women aged 39–89 years, 3D scanning was performed, digital models were created, and 3D printing was performed. The accuracy of the reconstruction was checked by comparative measurements with an electronic vernier caliper of the diameters of the elements of the brachial plexus in identical places in preparations and three-dimensional models. The data obtained were entered into the MS Excel 12.0 program and the analysis of the generated database was carried out using the Statistica for Windows 12.0 0 program.
Results and discussion. The developed 3D printing technique made it possible to reproduce the most accurate models of the brachial plexus with all elements (5 spinal nerves, 3 trunks, 6 divisions, 3 bundles and 15 nerves) in full size. A comparative qualitative analysis has shown that the created complete three-dimensional models have a high structural correspondence, improve depth perception, and emphasize spatial relationships. Quantitative analysis did not reveal significant differences in the diameters of the brachial plexus elements in the initial preparations and threedimensional models. The developed method and 3D-printed models make it possible to identify detailed features of the structure of the brachial plexus at the perineural level.
Conclusions. Creating a complete set of three-dimensional models of all variants of the structure of the brachial plexus will allow you to operate in augmented reality and increase the efficiency of operations. The conducted research is also the basis for the subsequent manufacture of biocompatible and biodegradable transplants that will allow to repair complex nerve damage in the upper limb.

About the Authors

N. S. Gorbunov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia; Research Institute of Medical Problems of the North of Krasnoyarsk Scientific Center of SB RAS
Russian Federation

 Nikolay S. Gorbunov, doctor of medical sciences, professor 

 660022, Krasnoyarsk, Partizana Zheleznyaka st., 1 

 660022, Krasnoyarsk, Partizana Zheleznyaka st., 3 



K. V. Kober
Krasnoyarsk Regional Clinical Oncological Dispensary named after A.I. Kryzhanovsky
Russian Federation

Kristina V. Kober, candidate of medical sciences 

660133, Krasnoyarsk, 1st Smolenskaya st., 16 



E. W. Kasparov
Research Institute of Medical Problems of the North of Krasnoyarsk Scientific Center of SB RAS
Russian Federation

Eduard W. Kasparov, doctor of medical sciences, professor 

660022, Krasnoyarsk, Partizana Zheleznyaka st., 3 



S. I. Rostovtsev
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

 Sergey I. Rostovtsev, doctor of medical sciences 

 660022, Krasnoyarsk, Partizana Zheleznyaka st., 1 



D. N. Gorbunov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

 Dmitry N. Gorbunov, candidate of medical sciences 

 660022, Krasnoyarsk, Partizana Zheleznyaka st., 1 



D. N. Lebedeva
Irkutsk State Medical University of Minzdrav of Russia
Russian Federation

Darya N. Lebedeva 

664003, Irkutsk, Krasnogo Vosstaniya st., 1 

 



B. Yu. Nikishaev
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Minzdrav of Russia
Russian Federation

 Bogdan Yu. Nikishaev 

660022, Krasnoyarsk, Partizana Zheleznyaka st., 1 



References

1. Tapp M., Wenzinger E., Tarabishy S., Ricci J., Herrera F.A. The epidemiology of upper extremity nerve injuries and associated cost in the us emergency departments. Ann. Plast. Surg. 2019;83(6):676–680. doi: 10.1097/SAP.0000000000002083

2. Padovano W.M., Dengler J., Patterson M.M., Yee A., Snyder-Warwick A.K., Wood M.D., Moore A.M., Mackinnon S.E. Incidence of nerve injury after extremity trauma in the united states. HAND (NY). 2022;17(4):615–623. doi: 10.1177/1558944720963895

3. Breyer J.M., Vergara P., Perez A. Epidemiology of adult traumatic brachial plexus injuries. In: Operative Brachial Plexus Surgery: Clinical Evaluation and Management Strategies. Eds. A.Y. Shin, N. Pulos. Springer International Publishing, 2021. P. 63–68. doi: 10.1007/978-3-030-69517-0_28

4. Kaiser R., Waldauf P., Ullas G., Krajcová A. Epidemiology, etiology and types of severe adult brachial plexus injuries requiring surgical repair: systematic review and meta-analysis. Neurosurg. Rev. 2020;43(2):443–452. doi: 10.1007/s10143-018-1009-2

5. Lunga H., O’Connor M., Rocher A.G.L., Marais L.C. Outcomes of surgically managed adult traumatic brachial plexus injuries in an upper-middle-income country. J. Orthop. 2024;51:66–72. doi: 10.1016/j.jor.2024.01.006

6. Singh V.K., Haq A., Tiwari M., Saxena A.K. Approach to management of nerve gaps in peripheral nerve injuries. Injury. 2022:53(4):1308–1318. doi: 10.1016/j.injury.2022.01.031

7. Gong H., Fei H., Xu Q., Gou M., Chen H.H. 3Dengineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. J. Biomed. Mater. Res. A. 2020;108(3):805–813. doi: 10.1002/jbm.a.36859

8. Zimmermann K.S., Aman M., Harhaus L., Boecker A.H. Improving outcomes in traumatic peripheral nerve injuries to the upper extremity. Eur. J. Orthop. Surg. Traumatol. 2023;34(7):3687–3697. doi: 10.1007/s00590-023-03751-3

9. Duraku L.S., Hundepool C.A., Moore A.M., Eberlin K.R., Zuidam J.M., George S., Power D.M. Sensory nerve transfers in the upper limb after peripheral nerve injury: a scoping review. J. Hand. Surg. Eur. Vol. 2024;49(8):946–955. doi: 10.1177/17531934231205546

10. Houshyar S., Bhattacharyya A., Shanks R. Peripheral nerve conduit: materials and structures. ACS Chem. Neurosci. 2019;10(8):3349–3365. doi: 10.1021/acschemneuro.9b00203

11. Song S., Wang X., Wang T., Yu Q., Hou Z., Zhu Z., Li R. Additive manufacturing of nerve guidance conduits for regeneration of injured peripheral nerves. Front. Bioeng. Biotechnol. 2020;8:590596. doi: 10.3389/fbioe.2020.590596

12. Zhang Ch., Gong J., Zhang J., Zhu Z., Qian Y., Lu K., Siyi Zhou S., Gu T., Wang H., He Y., Yu M. Three potential elements of developing nerve guidance conduit for peripheral nerve regeneration. Adv. Funct. Mater. 2023;33(40):2302251. doi: 10.1002/adfm.202302251

13. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. doi: 10.1016/j.actbio.2020.02.003

14. Liu K., Yan L., Li R., Song Z., Ding J., Liu B., Chen X. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv. Sci. (Weinh). 2022;9(12):2103875. doi: 10.1002/advs.202103875

15. Fang Y., Wang Ch., Liu Z., Ko J., Chen L., Zhang T., Xiong Z., Zhang L., Sun W. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv. Sci. (Weinh). 2023;10(12):e2205744. doi: 10.1002/advs.202205744

16. Huang Y., Wu W., Liu H., Chen Y., Li B., Gou Z., Li X., Gou M. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011. doi: 10.1093/burnst/tkab011

17. Johnson B.N., Lancaster K.Z., Zhen G., He J., Gupta M.K., Kong Y.L., Engel E.A., Krick K.D., Ju A., Meng F., … McAlpine M.C. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 2015;25(39):6205–6217. doi: 10.1002/adfm.201501760

18. Zhang J., Tao J., Cheng H., Liu H., Wu W., Dong Y., Liu X., Gou M., Yang S., Xu J. Nerve transfer with 3D-printed branch nerve conduits. Burns Trauma. 2022;10:tkac010. doi: 10.1093/burnst/tkac010

19. Bolleboom A., de Ruiter G.C.W., Coert J.H., Tuk B., Holstege J.C., van Neck J.W. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft. J. Neurosurg. 2019;130(1):184–196. doi: 10.3171/2017.8.JNS17276

20. Shahriari D., Loke G., Tafel I., Park S., Chiang P.H., Fink Y., Anikeeva P. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries. Adv. Mater. 2019;31(30):1902021. doi: 10.1002/adma.201902021

21. Zennifer A., Thangadurai M., Sundaramurthi D., Sethuraman S. Additive manufacturing of peripheral nerve conduits – Fabrication methods, design considerations and clinical challenges. SLAS Technol. 2023;28(3):102–126. doi: 10.1016/j.slast.2023.03.006

22. Selim O.A., Lakhani S., Midha S., Mosahebi A., Kalaska D.M. Three-dimensional engineered peripheral nerve: toward a new era of patient-specific nerve repair solutions. Tissue Eng. Part B: Rev. 2022; 28(2):295–335. doi: 10.1089/ten.teb.2020.0355

23. Zhang Y., Li X., Liu Y., Sun Y., Duan L., Zhang Y., Shi R., Yu X., Peng Zh. 3D SHINKEI MR neurography in evaluation of traumatic brachial plexus. Sci. Rep. 2024;14(1):6268. doi: 10.1038/s41598-024-57022-0

24. Chaker S.C., Reddy A.P., King D., Manzanera E.I.V. Thayer W.P. Diffusion tensor imaging techniques and applications for peripheral nerve injury. Ann. Plast. Surg. 2024; 93(3S Suppl 2):S113–S115. doi: 10.1097/SAP.0000000000004055

25. van Hoof T., Gomes G.T., Audenaert E., Verstraete K., Kerckaert I., D’herde K. 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat. Rec. (Hoboken). 2008;291(9):1173–1185. doi: 10.1002/ar.20735

26. van de Velde J., Bogaert S., Vandemaele P., Huysse W., Achten E., Leijnse J., de Neve W., van Hoof T. Brachial plexus 3D reconstruction from MRI with dissection validation: a baseline study for clinical applications. Surg. Radiol. Anat. 2016;38(2):229–236. doi: 10.1007/s00276-015-1549-x

27. Zhao X., Zhao H., Zheng W., Gohritz A., Shen Y., Xu W. Clinical evaluation of augmented reality-based 3D navigation system for brachial plexus tumor surgery. World J. Surg. Oncol. 2024;22:20. doi: 10.1186/s12957-023-03288

28. Wake N., Lin Y., Tan E.T., Sneag D.B., Ianucci S., Fung M. 3D printing of the brachial plexus and its osseous landmarks using magnetic resonance neurography for thoracic outlet syndrome evaluation. J. 3D Print. Med. 2024;10(1):36. doi: 10.1186/s41205-024-00239-6


Review

Views: 700


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)