Three-dimensional models of the brachial plexus as the basis of augmented reality and artificial transplants
https://doi.org/10.18699/SSMJ20250208
Abstract
In case of complex injuries to the nerves of the upper limb during surgery in augmented reality and when creating artificial transplants, knowledge of the three-dimensional structure of the brachial plexus is necessary. The aim of this study is to develop a method for manufacturing maximally detailed and accurate hollow three-dimensional models of the brachial plexus from photopolymer resins.
Material and methods. Using the developed technique, all elements of the right brachial plexus were dissected and isolated from 10 corpses of men and women aged 39–89 years, 3D scanning was performed, digital models were created, and 3D printing was performed. The accuracy of the reconstruction was checked by comparative measurements with an electronic vernier caliper of the diameters of the elements of the brachial plexus in identical places in preparations and three-dimensional models. The data obtained were entered into the MS Excel 12.0 program and the analysis of the generated database was carried out using the Statistica for Windows 12.0 0 program.
Results and discussion. The developed 3D printing technique made it possible to reproduce the most accurate models of the brachial plexus with all elements (5 spinal nerves, 3 trunks, 6 divisions, 3 bundles and 15 nerves) in full size. A comparative qualitative analysis has shown that the created complete three-dimensional models have a high structural correspondence, improve depth perception, and emphasize spatial relationships. Quantitative analysis did not reveal significant differences in the diameters of the brachial plexus elements in the initial preparations and threedimensional models. The developed method and 3D-printed models make it possible to identify detailed features of the structure of the brachial plexus at the perineural level.
Conclusions. Creating a complete set of three-dimensional models of all variants of the structure of the brachial plexus will allow you to operate in augmented reality and increase the efficiency of operations. The conducted research is also the basis for the subsequent manufacture of biocompatible and biodegradable transplants that will allow to repair complex nerve damage in the upper limb.
About the Authors
N. S. GorbunovRussian Federation
Nikolay S. Gorbunov, doctor of medical sciences, professor
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
660022, Krasnoyarsk, Partizana Zheleznyaka st., 3
K. V. Kober
Russian Federation
Kristina V. Kober, candidate of medical sciences
660133, Krasnoyarsk, 1st Smolenskaya st., 16
E. W. Kasparov
Russian Federation
Eduard W. Kasparov, doctor of medical sciences, professor
660022, Krasnoyarsk, Partizana Zheleznyaka st., 3
S. I. Rostovtsev
Russian Federation
Sergey I. Rostovtsev, doctor of medical sciences
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
D. N. Gorbunov
Russian Federation
Dmitry N. Gorbunov, candidate of medical sciences
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
D. N. Lebedeva
Russian Federation
Darya N. Lebedeva
664003, Irkutsk, Krasnogo Vosstaniya st., 1
B. Yu. Nikishaev
Russian Federation
Bogdan Yu. Nikishaev
660022, Krasnoyarsk, Partizana Zheleznyaka st., 1
References
1. Tapp M., Wenzinger E., Tarabishy S., Ricci J., Herrera F.A. The epidemiology of upper extremity nerve injuries and associated cost in the us emergency departments. Ann. Plast. Surg. 2019;83(6):676–680. doi: 10.1097/SAP.0000000000002083
2. Padovano W.M., Dengler J., Patterson M.M., Yee A., Snyder-Warwick A.K., Wood M.D., Moore A.M., Mackinnon S.E. Incidence of nerve injury after extremity trauma in the united states. HAND (NY). 2022;17(4):615–623. doi: 10.1177/1558944720963895
3. Breyer J.M., Vergara P., Perez A. Epidemiology of adult traumatic brachial plexus injuries. In: Operative Brachial Plexus Surgery: Clinical Evaluation and Management Strategies. Eds. A.Y. Shin, N. Pulos. Springer International Publishing, 2021. P. 63–68. doi: 10.1007/978-3-030-69517-0_28
4. Kaiser R., Waldauf P., Ullas G., Krajcová A. Epidemiology, etiology and types of severe adult brachial plexus injuries requiring surgical repair: systematic review and meta-analysis. Neurosurg. Rev. 2020;43(2):443–452. doi: 10.1007/s10143-018-1009-2
5. Lunga H., O’Connor M., Rocher A.G.L., Marais L.C. Outcomes of surgically managed adult traumatic brachial plexus injuries in an upper-middle-income country. J. Orthop. 2024;51:66–72. doi: 10.1016/j.jor.2024.01.006
6. Singh V.K., Haq A., Tiwari M., Saxena A.K. Approach to management of nerve gaps in peripheral nerve injuries. Injury. 2022:53(4):1308–1318. doi: 10.1016/j.injury.2022.01.031
7. Gong H., Fei H., Xu Q., Gou M., Chen H.H. 3Dengineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. J. Biomed. Mater. Res. A. 2020;108(3):805–813. doi: 10.1002/jbm.a.36859
8. Zimmermann K.S., Aman M., Harhaus L., Boecker A.H. Improving outcomes in traumatic peripheral nerve injuries to the upper extremity. Eur. J. Orthop. Surg. Traumatol. 2023;34(7):3687–3697. doi: 10.1007/s00590-023-03751-3
9. Duraku L.S., Hundepool C.A., Moore A.M., Eberlin K.R., Zuidam J.M., George S., Power D.M. Sensory nerve transfers in the upper limb after peripheral nerve injury: a scoping review. J. Hand. Surg. Eur. Vol. 2024;49(8):946–955. doi: 10.1177/17531934231205546
10. Houshyar S., Bhattacharyya A., Shanks R. Peripheral nerve conduit: materials and structures. ACS Chem. Neurosci. 2019;10(8):3349–3365. doi: 10.1021/acschemneuro.9b00203
11. Song S., Wang X., Wang T., Yu Q., Hou Z., Zhu Z., Li R. Additive manufacturing of nerve guidance conduits for regeneration of injured peripheral nerves. Front. Bioeng. Biotechnol. 2020;8:590596. doi: 10.3389/fbioe.2020.590596
12. Zhang Ch., Gong J., Zhang J., Zhu Z., Qian Y., Lu K., Siyi Zhou S., Gu T., Wang H., He Y., Yu M. Three potential elements of developing nerve guidance conduit for peripheral nerve regeneration. Adv. Funct. Mater. 2023;33(40):2302251. doi: 10.1002/adfm.202302251
13. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. doi: 10.1016/j.actbio.2020.02.003
14. Liu K., Yan L., Li R., Song Z., Ding J., Liu B., Chen X. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv. Sci. (Weinh). 2022;9(12):2103875. doi: 10.1002/advs.202103875
15. Fang Y., Wang Ch., Liu Z., Ko J., Chen L., Zhang T., Xiong Z., Zhang L., Sun W. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv. Sci. (Weinh). 2023;10(12):e2205744. doi: 10.1002/advs.202205744
16. Huang Y., Wu W., Liu H., Chen Y., Li B., Gou Z., Li X., Gou M. 3D printing of functional nerve guide conduits. Burns Trauma. 2021;9:tkab011. doi: 10.1093/burnst/tkab011
17. Johnson B.N., Lancaster K.Z., Zhen G., He J., Gupta M.K., Kong Y.L., Engel E.A., Krick K.D., Ju A., Meng F., … McAlpine M.C. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 2015;25(39):6205–6217. doi: 10.1002/adfm.201501760
18. Zhang J., Tao J., Cheng H., Liu H., Wu W., Dong Y., Liu X., Gou M., Yang S., Xu J. Nerve transfer with 3D-printed branch nerve conduits. Burns Trauma. 2022;10:tkac010. doi: 10.1093/burnst/tkac010
19. Bolleboom A., de Ruiter G.C.W., Coert J.H., Tuk B., Holstege J.C., van Neck J.W. Novel experimental surgical strategy to prevent traumatic neuroma formation by combining a 3D-printed Y-tube with an autograft. J. Neurosurg. 2019;130(1):184–196. doi: 10.3171/2017.8.JNS17276
20. Shahriari D., Loke G., Tafel I., Park S., Chiang P.H., Fink Y., Anikeeva P. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries. Adv. Mater. 2019;31(30):1902021. doi: 10.1002/adma.201902021
21. Zennifer A., Thangadurai M., Sundaramurthi D., Sethuraman S. Additive manufacturing of peripheral nerve conduits – Fabrication methods, design considerations and clinical challenges. SLAS Technol. 2023;28(3):102–126. doi: 10.1016/j.slast.2023.03.006
22. Selim O.A., Lakhani S., Midha S., Mosahebi A., Kalaska D.M. Three-dimensional engineered peripheral nerve: toward a new era of patient-specific nerve repair solutions. Tissue Eng. Part B: Rev. 2022; 28(2):295–335. doi: 10.1089/ten.teb.2020.0355
23. Zhang Y., Li X., Liu Y., Sun Y., Duan L., Zhang Y., Shi R., Yu X., Peng Zh. 3D SHINKEI MR neurography in evaluation of traumatic brachial plexus. Sci. Rep. 2024;14(1):6268. doi: 10.1038/s41598-024-57022-0
24. Chaker S.C., Reddy A.P., King D., Manzanera E.I.V. Thayer W.P. Diffusion tensor imaging techniques and applications for peripheral nerve injury. Ann. Plast. Surg. 2024; 93(3S Suppl 2):S113–S115. doi: 10.1097/SAP.0000000000004055
25. van Hoof T., Gomes G.T., Audenaert E., Verstraete K., Kerckaert I., D’herde K. 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat. Rec. (Hoboken). 2008;291(9):1173–1185. doi: 10.1002/ar.20735
26. van de Velde J., Bogaert S., Vandemaele P., Huysse W., Achten E., Leijnse J., de Neve W., van Hoof T. Brachial plexus 3D reconstruction from MRI with dissection validation: a baseline study for clinical applications. Surg. Radiol. Anat. 2016;38(2):229–236. doi: 10.1007/s00276-015-1549-x
27. Zhao X., Zhao H., Zheng W., Gohritz A., Shen Y., Xu W. Clinical evaluation of augmented reality-based 3D navigation system for brachial plexus tumor surgery. World J. Surg. Oncol. 2024;22:20. doi: 10.1186/s12957-023-03288
28. Wake N., Lin Y., Tan E.T., Sneag D.B., Ianucci S., Fung M. 3D printing of the brachial plexus and its osseous landmarks using magnetic resonance neurography for thoracic outlet syndrome evaluation. J. 3D Print. Med. 2024;10(1):36. doi: 10.1186/s41205-024-00239-6