Cardioprotective effect of peptide and non-peptide opioid receptor agonists in cardiac reperfusion: potential clinical application of experimental data
https://doi.org/10.18699/SSMJ20250204
Abstract
Mortality in patients with acute myocardial infarction is 5–8 % and has not decreased in recent years. One of the causes of death is reperfusion cardiac injury. It is quite obvious that there is an urgent need to develop drugs that can effectively reduce mortality in AMI. Opioids could become such drugs. The activation of peripheral µ2-, δ2-, κ1- opioid receptors reduces in infarct size and improves contractility in reperfusion. Peripheral µ1-, δ1-, κ2-receptors are not involved in the regulation of cardiac tolerance to reperfusion cardiac injury. Opioid postconditioning limits myocardial inflammation, reduces microvascular obstruction, inhibits apoptosis of cardiomyocytes and mitigates adverse postinfarction remodeling. Opioids can reduce excess reactive oxygen species production in the reperfused myocardium. The most promising drugs may be opioid peptides that do not penetrate the blood-brain barrier and therefore, unlike other opioids, do not cause nausea, vomiting, and respiratory depression.
Keywords
About the Authors
A. V. MukhomedzyanovRussian Federation
Aleksandr V. Mukhomedzyanov, candidate of medical sciences
634012, Tomsk, Kievskaya st., 111a
L. N. Maslov
Russian Federation
Leonid N. Maslov, doctor of medical sciences, professor
634012, Tomsk, Kievskaya st., 111a
S. V. Popov
Russian Federation
Sergey V. Popov, doctor of medical sciences, professor, academician of the RAS
634012, Tomsk, Kievskaya st., 111a
A. S. Slidnevskaya
Russian Federation
Alisa S. Slidnevskaya
634012, Tomsk, Kievskaya st., 111a
A. Kan
Russian Federation
Artur Kan
634012, Tomsk, Kievskaya st., 111a
N. V. Naryzhnaya
Russian Federation
Natalya V. Naryzhnaya, doctor of medical sciences
634012, Tomsk, Kievskaya st., 111a
References
1. Menees D.S., Peterson E.D., Wang Y., Curtis J.P., Messenger J.C., Rumsfeld J.S., Gurm H.S. Door-toballoon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013;369(10):901–909. doi: 10.1056/NEJMoa1208200
2. Fabris E., Kilic S., Schellings D.A.A.M., Ten Berg J.M., Kennedy M.W., van Houwelingen K.G., Giannitsis E., Kolkman E., Ottervanger J.P., Hamm C., Van’t Hof A.W.J. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart. 2017;103(19):1515–1520. doi: 10.1136/heartjnl-2017-311181
3. Vaidya S.R., Devarapally S.R., Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 2017;7(1):16–26. doi: 10.21037/cdt.2016.08.06
4. Olier I., Sirker A., Hildick-Smith D.J.R., Kinnaird T., Ludman P., de Belder M.A., Baumbach A., Byrne J., Rashid M., Curzen N., … British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart. 2018;104(20):1683–1690. doi: 10.1136/heartjnl-2017-312366
5. Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M., Mentias A., Elgendy I., Burke M.N., Capodanno D., Brilakis E.S. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. doi: 10.1016/j.carrev.2020.09.032
6. Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R., Siddal M.T., Ashraf M., Ashraf S., Ashraf S., … Saboor Q.A. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1 Pt B):102049. doi: 10.1016/j.cpcardiol.2023.102049
7. Barbarash O.L., Pecherina T.B. Modern ways to reduced mortality of myocardial infarction. What should be done? Sibirskij nauchnyj medicinskij zhurnal = Siberian scientific medical journal. 2023;43(5):6–13. [In Russian]. doi: 10.18699/SSMJ20230501
8. McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart. J. Cardiovasc. Imaging. 2019;20(2):133–135. doi: 10.1093/ehjci/jey159
9. Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. doi: 10.1097/CRD.0000000000000190
10. Basir M.B., Lemor A., Gorgis S., Taylor A.M., Tehrani B., Truesdell A.G., Bharadwaj A., Kolski B., Patel K., Gelormini J., … National Cardiogenic Shock Initiative Investigators. Affiliations. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter. Cardiovasc. Interv. 2022;99(3):650–657. doi: 10.1002/ccd.29895
11. Panteleev O.O., Ryabov V.V. Cardiogenic shock: What’s new? Sibirskiy zhurnal klinicheskoy i eksperimental’noy meditsiny = Siberian Journal of Clinical and Experimental Medicine. 2022;36(4):45–51. [In Russian]. doi: 10.29001/2073-8552-2021-36-4-45-51
12. Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A., Brindis R., Bueno H., Rodrí- guez-Padial L., Marín F., … Anguita M. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. doi: 10.1111/eci.13526
13. Palacios Ordonez C., Garan A.R. The landscape of cardiogenic shock: epidemiology and current definitions. Curr. Opin. Cardiol. 2022;37(3):236–240. doi: 10.1097/HCO.0000000000000957
14. Omer M.A., Brilakis E.S., Kennedy K.F., Alkhouli M., Elgendy I.Y., Chan P.S., Spertus J.A. Multivessel versus culprit-vessel percutaneous coronary intervention in patients with non–ST-segment elevation myocardial infarction and cardiogenic shock. JACC. Cardiovasc. Interv. 2021;14(10):1067–1078. doi: 10.1016/j.jcin.2021.02.021
15. Maslov L.N., Naryzhnaya N.V., Popov S.V., Mukhomedzyanov A.V., Derkachev I.A., Kurbatov B.K., Krylatov A.V., Fu F., Pei J., Ryabov V.V., … Sarybaev A. A historical literature review of coronary microvascular obstruction and intra-myocardial hemorrhage as functional/structural phenomena. J. Biomed. Res. 2023;37(4):281–302. doi: 10.7555/JBR.37.20230021
16. Ryabov V.V., Vyshlov E.V., Maslov L.N., Naryzhnaya N.V., Mukhomedzyanov A.V., Boshchenko A.A., Derkachev I.A., Kurbatov B.K., Krylatov A.V., Gombozhapova A.E., … Diez E.R. The role of microvascular obstruction and intra-myocardial hemorrhage in reperfusion cardiac injury. analysis of clinical data. Rev. Cardiovasc. Med. 2024;25(3):105. doi: 10.31083/j.rcm2503105
17. Macut D., Ognjanović S., Ašanin M., Krljanać G., Milenković T. Metabolic syndrome and myocardial infarction in women. Curr. Pharm. Des. 2021;27(36):3786–3794. doi: 10.2174/1381612827666210610114029
18. Mao Q., Zhou D., Li Y., Wang Y., Xu S.C., Zhao X.H. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome. Dis. Markers. 2019;2019:6891537. doi: 10.1155/2019/6891537
19. Wang H.H., Jia S.D., Liu Y., Xu J.J., Gao Z., Song Y., Tang X.F., Jiang P., Zhao X.Y., Song L., … Gao L.J. The impact of metabolic syndrome and its individual components on long-term prognosis of patients undergoing percutaneous coronary intervention. Zhonghua Yi Xue Za Zhi. 2020;100(21):1623–1628. doi: 10.3760/cma.j.cn112137-20190920-02077
20. Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J., Brown S.A., Lishmanov Y.B., Downey J.M. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. doi: 10.1002/med.21395
21. Gross G.J., Auchampach J.A. Reperfusion injury: Does it exist? J. Mol. Cell. Cardiol. 2007;42(1):12–18. doi: 10.1016/j.yjmcc.2006.09.009
22. Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol. 2003;285(2):579–588. doi: 10.1152/ajpheart.01064.2002
23. Gross E.R., Hsu A.K., Gross G.J. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic. Res. Cardiol. 2007;102(4):341–349. doi: 10.1007/s00395-007-0651-6
24. Förster K., Kuno A., Solenkova N., Felix S.B., Krieg T. The δ-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation. Am. J. Physiol. Heart. Circ. Physiol. 2007;293(3):1604–1608. doi: 10.1152/ajpheart.00418.2007
25. Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo andin vitrocharacterization.Life Sci. 2007;81(15):1223–1227. doi: 10.1016/j.lfs.2007.08.031
26. Gross G. Role of opioids in acute and delayed preconditioning. J. Mol. Cell. Cardiol. 2003;35(7):709–718. doi: 10.1016/S0022-2828(03)00135-4
27. Chen Z., Li T., Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res. 2008;145(2):287–294. doi: 10.1016/j.jss.2007.07.020
28. Roques B., Gacel G., Daugé V., Baamonde A., Calenco G., Turcaud S., Coric P., Fournie-Zaluski M.C. Novel approaches in the development of new analgesics. Neurophysil. Clin. 1990;20(5):369–387. doi: 10.1016/S0987-7053(05)80205-9
29. Mourouzis I., Saranteas T., Perimenis P., Tesseromatis C., Kostopanagiotou G., Pantos C., Cokkinos D.V. Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation. Eur. J. Anaesthesiol. 2009;26(7):572–581. doi: 10.1097/EJA.0b013e32832a225a
30. Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the δ-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. doi: 10.1213/ANE.0b013e3181b92201
31. Wong G.T.C., Li R., Jiang L.L., Irwin M.G. Remifentanil post-conditioning attenuates cardiac ischemia–reperfusion injury via κ or δ opioid receptor activation. Acta. Anaesthesiol. Scand. 2010;54(4):510–518. doi: 10.1111/j.1399-6576.2009.02145.x
32. Huhn R., Heinen A., Weber N.C., Schlack W., Preckel B., Hollmann M.W. Ischaemic and morphine-induced post-conditioning: impact of mKCa channels. Br. J. Anaesth. 2010;105(5):589–595. doi: 10.1093/bja/aeq213
33. Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H., Lee M.Y., Park J.H. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean. J. Anesthesiol. 2011;61(1):69–74. doi: 10.4097/kjae.2011.61.1.69
34. Chen Z., Liu R., Niu Q., Wang H., Yang Z., Bao Y. Morphine postconditioning alleviates autophage in ischemia-reperfusion induced cardiac injury through up-regulating lncRNA UCA1. Biomed. Pharmacother. 2018;108:1357–1364. doi: 10.1016/j.biopha.2018.09.119
35. Chen Z., Zhang X., Liu Y., Liu Z. Morphine postconditioning protects against reperfusion injury via inhibiting JNK/p38 MAPK and mitochondrial permeability transition pores signaling pathways. Cell. Physiol. Biochem. 2016;39(1):61–70. doi: 10.1159/000445605
36. Chen Z., Spahn D.R., Zhang X., Liu Y., Chu H., Liu Z. Morphine postconditioning protects against reperfusion injury: the role of protein kinase c-epsilon, extracellular signal-regulated kinase 1/2 and mitochondrial permeability transition pores. Cell. Physiol. Biochem. 2016;39(5):1930–1940. doi: 10.1159/000447890
37. Lei Y., Li X.X., Guo Z. Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Eur. J. Pharmacol. 2022;928:175094. doi: 10.1016/j.ejphar.2022.175094
38. Wu Y., Gu E.W., Zhu Y., Zhang L., Liu X.Q., Fang W.P. Sufentanil limits the myocardial infarct size by preservation of the phosphorylated connexin 43. Int. Immunopharmacol. 2012;13(3):341–346. doi: 10.1016/j.intimp.2012.04.009
39. Tao H., Nuo M., Min S. Sufentanil protects the rat myocardium against ischemia–reperfusion injury via activation of the ERK1/2 pathway. Cytotechnology. 2018;70(1):169–176. doi: 10.1007/s10616-017-0127-y
40. Ha J.Y., Lee Y.C., Park S.J., Jang Y.H., Kim J.H. Remifentanil postconditioning has cross talk with adenosine receptors in the ischemic-reperfused rat heart. J. Surg. Res. 2015;195(1):37–43. doi: 10.1016/j.jss.2015.01.010
41. Lin P.T., Chen W.H., Zheng H., Lai Z.M., Zhang L.C. Involvement of AQP 1 in the cardioprotective effect of remifentanil post-conditioning in ischemia/reperfusion rats. Int. J. Clin. Exp. Med. 2015;8(8):12736–12745.
42. Chen M., Liu Q., Chen L., Zhang L., Cheng X., Gu E. HDAC3 Mediates cardioprotection of remifentanil postconditioning by targeting GSK-3β in H9c2 cardiomyocytes in hypoxia/reoxygenation injury. Shock. 2018;50(2):240–247. doi: 10.1097/SHK.0000000000001008
43. James M.K., Feldman P.L., Schuster S.V., Bilotta J.M., Brackeen M.F., Leighton H.J. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J. Pharmacol. Exp. Ther. 1991;259(2):712–718.
44. Xu J., Bian X., Zhao H., Sun Y., Tian Y., Li X., Tian W. Morphine prevents ischemia/reperfusion-induced myocardial mitochondrial damage by activating δ-opioid receptor/EGFR/ROS pathway. Cardiovasc. Drugs Ther. 2022;36(5):841–857. doi: 10.1007/s10557-021-07215-w
45. Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454–463. doi: 10.1007/s00395-008-0726-z
46. Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S., Kim J.M., Lee M.Y. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. doi: 10.4097/kjae.2011.60.5.351
47. Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S., Kaye A.D., Huang L., Pei J. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia–reperfusion in rat heart. Cytokine. 2011;56(2):503–507. doi: 10.1016/j.cyto.2011.07.015
48. Wu Y., Wan J., Zhen W.Z., Chen L.F., Zhan J., Ke J.J., Zhang Z.Z., Wang Y.L. The effect of butorphanol postconditioning on myocardial ischaemia reperfusion injury in rats. Interact. Cardiovasc. Thorac. Surg. 2014;18(3):308–312. doi: 10.1093/icvts/ivt516
49. Huang L., Li J., Gu J., Qu M.X., Yu J., Wang Z.Y. Butorphanol attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis in mice. Eur. Rev. Med. Pharmacol. Sci. 2018;22(6):1819–1824. doi: 10.26355/eurrev_201803_14601
50. Tsibulnikov S.Yu., Maslov L.N., Mukhomedzyanov A.V., Krylatov A.V., Tsibulnikova M.R., Lishmanov Yu.B. Prospects of using of κ-opioid receptor agonists U-50,488 and ICI 199,441 for improving heart resistance to ischemia/reperfusion. Bull. Exp. Biol. Med. 2015;159(6):718–721. doi: 10.1007/s10517-015-3057-8
51. Popov S.V., Mukhomedzyanov A.V., Tsibulnikov S.Y., Khaliulin I., Oeltgen P.R., Rajendra Prasad N., Maslov L.N. Activation of peripheral opioid κ1 receptor prevents cardiac reperfusion injury. Physiol. Res. 2021;70(4):523–531. doi: 10.33549/physiolres.934646
52. Mukhomedzyanov A.V., Tsibulnikov S.Yu., Maslov L.N. Comparative analysis of infarct size limiting activity of κ-opioid receptor agonists in in vivo reperfused heart. Bull. Exp. Biol. Med. 2021;170(5):594–597. doi: 10.1007/s10517-021-05113-7
53. Zhang S., Zhou Y., Zhao L., Tian X., Jia M., Gu X., Feng N., An R., Yang L., Zheng G., … Pei J. κ-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation. Eur. J. Pharmacol. 2018;833:100–108. doi: 10.1016/j.ejphar.2018.05.043
54. Tian X., Zhou Y., Wang Y., Zhang S., Feng J., Wang X., Guo H., Fan R., Feng N., Jia M., … Pei J. Mitochondrial dysfunction and apoptosis are attenuated on κ-opioid receptor activation through AMPK/GSK-3β pathway after myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 2019;73(2):70–81. doi: 10.1097/FJC.0000000000000635
55. Zhang W.P., Zong Q.F., Gao Q., Yu Y., Gu X.Y., Wang Y., Li Z.H., Ge M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol. Med. Rep. 2016;14(4):3992–3998. doi: 10.3892/mmr.2016.5695
56. Wu S., Zhang L., Fan H., Huang Y., Zong Q., Gao Q., Li Z. PI3K/Akt signaling pathway mediates the protective effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan. Fang. Yi Ke Da Xue Xue Bao. 2021;41(6):870–875. doi: 10.12122/j.issn.1673-4254.2021.06.09
57. Huang Y.P., Yang T.H., Jin Z.Y., Wang Y., Ye H.W., Gao Q., Li Z.H. Role of mitochondrial permeability transition pore in mediating the effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan. Fang Yi. Ke Da Xue Xue Bao. 2018;38(5):547–553. doi: 10.3969/j.issn.1673-4254.2018.05.07
58. Mukhomedzyanov A.V., Maslov L.N., Tsibulnikov S.Yu., Pei J.M. Endomorphins and β-endorphin do not affect heart tolerance to the pathogenic effect of reperfusion. Bull. Exp. Biol. Med. 2016;162(1):23–26. doi: 10.1007/s10517-016-3535-7
59. He S.F., Jin S.Y., Yang W., Pan Y.L., Huang J., Zhang S.J., Zhang L., Zhang Y. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br. J. Anaesth. 2018;121(1):26–37. doi: 10.1016/j.bja.2017.11.110
60. Goldberg I.E., Rossi G.C., Letchworth S.R., Mathis J.P., Ryan-Moro J., Leventhal L., Su W., Emmel D., Bolan E.A., Pasternak G.W. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Pharmacol. Exp. Ther. 1998;286(2):1007–1013.
61. Aitchison K.A., Baxter G.F., Moneeb Awan M., Smith R.M., Yellon D.M., Opie L.H. Opposing effects on infarction of delta and kappa opioid receptor activation in the isolated rat heart: implications for ischemic preconditioning. Basic. Res. Cardiol. 2000;95(1):1–10. doi: 10.1007/s003950050001
62. Zhu Y., Chi J., Cai S., Liu S., Yuan J., Xu H., Zhou H. High-dose remifentanil exacerbates myocardial ischemia-reperfusion injury through activation of calcium-sensing receptor-mediated pyroptosis. Int. J. Med. Sci. 2023;20(12):1570–1583. doi: 10.7150/ijms.83207
63. Schultz J.E.J., Hsu A.K., Nagase H., Gross G.J. TAN-67, a δ1-opioid receptor agonist, reduces infarct size via activation of G i/o proteins and KATP channels. Am. J. Physiol. 1998;274(3):909–914. doi: 10.1152/ajpheart.1998.274.3.H909
64. Huh J., Gross G.J., Nagase H., Liang B.T. Protection of cardiac myocytes via δ1 -opioid receptors, protein kinase C, and mitochondrial K ATP channels. Am. J. Physiol. Heart. Circ. Physiol. 2001;280(1):377–383. doi: 10.1152/ajpheart.2001.280.1.H377
65. Mukhomedzyanov A.V., Tsibulnikov S.Yu., Krylatov A.V., Maslov L.N. Comparative analysis of infarct size limiting activity of δ-opioid receptor agonists in reperfused heart in vivo. Bull. Exp. Biol. Med. 2021;170(5):604–607. doi: 10.1007/s10517-021-05115-5
66. Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. doi: 10.1016/j.ejphar.2021.174302
67. Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R., Singh N., Fu F., Azev V.N. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: the molecular mechanism. Membranes (Basel). 2023;13(1):63. doi: 10.3390/membranes13010063
68. Maslov L.N., Lishmanov Yu.B. The blood-brain barrier permeability for opioid peptides. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2017;80(6):39–44. [In Russian].
69. Mukhomedzyanov A.V., Popov S.V., Naryzhnaya N.V., Azev V.N., Maslov L.N. The role of δ2- opioid receptors in the regulation of tolerance of isolated cardiomyocytes to hypoxia and reoxygenation. Bull. Exp. Biol. Med. 2024;176(4):433–436. doi: 10.1007/s10517-024-06041-y
70. Hou J., Wang H., Li X., Zhu Y. Remifentanil functions in the adaptive protection of cardiac function following ischemia. Exp. Ther. Med. 2017;13(4):1514–1520. doi: 10.3892/etm.2017.4124
71. Zhao S., Zhang C., Pi Z., Li R., Han P., Guo L. Oxycodone protects cardiomyocytes from ischemia-reperfusion-induced apoptosis via PI3K/Akt pathway. Pharmazie. 2020;75(9):430–435. doi: 10.1691/ph.2020.0497
72. Seewald M., Coles J.A., Sigg D.C., Iaizzo P.A. Featured Article: Pharmacological postconditioning with delta opioid attenuates myocardial reperfusion injury in isolated porcine hearts. Exp. Biol. Med. (Maywood). 2017;242(9):986–995. doi: 10.1177/1535370216684041
73. Stiermaier T., Schaefer P., Meyer-Saraei R., Saad M., de Waha-Thiele S., Pöss J., Fuernau G., Graf T., Kurz T., Frydrychowicz A., … Eitel I. Impact of morphine treatment with and without metoclopramide coadministration on myocardial and microvascular injury in acute myocardial infarction: insights from the randomized MonAMI trial. J. Am. Heart. Assoc. 2021;10(9):e018881. doi: 10.1161/JAHA.120.018881
74. Li X., Gui Z., Liu H., Qian S., Jia Y., Luo X. Remifentanil pretreatment ameliorates H/R-induced cardiac microvascular endothelial cell dysfunction by regulating the PI3K/Akt/HIF-1α signaling pathway. Bioengineered. 2021;12(1):7872–7881. doi: 10.1080/21655979.2021.1969843
75. Tong G., Zhang B., Zhou X., Zhao J., Sun Z., Tao Y., Pei J., Zhang W. Kappa-opioid agonist U50,488H-mediated protection against heart failure following myocardial ischemia/reperfusion: dual roles of heme oxygenase-1. Cell. Physiol. Biochem. 2016;39(6):2158–2172. doi: 10.1159/000447911
76. Rajani S.F., Imani A., Faghihi M., Izad M., Kardar G.A., Salehi Z. Post-infarct morphine treatment mitigates left ventricular remodeling and dysfunction in a rat model of ischemia-reperfusion. Eur. J. Pharmacol. 2019;847:61–71. doi: 10.1016/j.ejphar.2019.01.023
77. Rajani S.F., Faghihi M., Imani A. Post-infarct morphine treatment reduces apoptosis and myofibroblast density in a rat model of cardiac ischemia-reperfusion. Eur. J. Pharmacol. 2020;887:173590. doi: 10.1016/j.ejphar.2020.173590
78. Chen Q.L., Gu E.W., Zhang L., Cao Y.Y., Zhu Y., Fang W.P. Diabetes mellitus abrogates the cardioprotection of sufentanil against ischaemia/reperfusion injury by altering glycogen synthase kinase-3β. Acta Anaesthesiol. Scand. 2013;57(2):236–242. doi: 10.1111/j.1399-6576.2012.02748.x
79. Zhang Y., Zhang L., Gu E., Zhu B., Zhao X., Chen J. Long-term insulin treatment restores cardioprotection induced by sufentanil postconditioning in diabetic rat heart. Exp. Biol. Med. (Maywood). 2016;241(6):650–657. doi: 10.1177/1535370215622706
80. Chen L., Chen M., Du J., Wan L., Zhang L., Gu E. Hyperglycemia attenuates remifentanil postconditioning-induced cardioprotection against hypoxia/reoxygenation injury in H9c2 cardiomyoblasts. J. Surg. Res. 2016;203(2):483–490. doi: 10.1016/j.jss.2016.03.052
81. Chen X., Zhao S., Xia Y., Xiong Z., Li Y., Tao L., Zhang F., Wang X. G protein coupled receptor kinase-2 upregulation causes κ-opioid receptor desensitization in diabetic heart. Biochem. Biophys. Res. Commun. 2017;482(4):658–664. doi: 10.1016/j.bbrc.2016.11.090
82. Zemljic-Harpf A.E., See Hoe L.E., Schilling J.M., Zuniga-Hertz J.P., Nguyen A., Vaishnav Y.J., Belza G.J., Budiono B.P., Patel P.M., Head B.P., … Patel H.H. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB. J. 2021;35(3):e21407. doi: 10.1096/fj.201903233R
83. Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.N., Oeltgen P.R. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. doi: 10.1016/j.exger.2021.111543
84. Fuardo M., Lemoine S., Coco C.L., Hanouz J.L., Massetti M. [D-Ala2, D-Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium. Exp. Biol. Med. (Maywood). 2013;238(4):426–432. doi: 10.1177/1535370212474602
85. Kunecki M., Płazak W., Roleder T., Biernat J., Oleksy T., Podolec P., Gołba K.S. “Opioidergic postconditioning” of heart muscle during ischemia/reperfusion injury. Cardiol. J. 2017;24(4):419–426. doi: 10.5603/CJ.a2016.0090
86. Kunecki M., Roleder T., Biernat J., Kukla P., Tomkiewicz-Pająk L., Deja M., Podolec P., Gołba K.S., Płazak W. Opioidergic conditioning of the human heart muscle in nitric oxide-dependent mechanism. Adv. Clin. Exp. Med. 2018;27(8):1069–1073. doi: 10.17219/acem/70192
87. de Waha S., Eitel I., Desch S., Fuernau G., Lurz P., Urban D., Schuler G., Thiele H. Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin. Res. Cardiol. 2015;104(9):727–734. doi: 10.1007/s00392-015-0835-2
88. Gwag H.B., Kim E.K., Park T.K., Lee J.M., Yang J.H., Song Y. B., Choi J.H., Choi S.H., Lee S.H., Chang S.A., … Hahn J.Y. Cardioprotective effects of intracoronary morphine in st-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: a prospective, randomized trial. J. Am. Heart. Assoc. 2017;6(4 ):e005426. doi: 10.1161/JAHA.116.005426
89. Farag M., Spinthakis N., Srinivasan M., Sullivan K., Wellsted D., Gorog D. Morphine analgesia Pre-PPCI Is associated with prothrombotic state, reduced spontaneous reperfusion and greater infarct size. Thromb. Haemost. 2018;118(3):601–612. doi: 10.1055/s-0038-1629896
90. Le Corvoisier P., Gallet R., Lesault P.F., Audureau E., Paul M., Ternacle J., Ghostine S., Champagne S., Arrouasse R., Bitari D., … Teiger E. Intra-coronary morphine versus placebo in the treatment of acute ST-segment elevation myocardial infarction: the MIAMI randomized controlled trial. BMC. Cardiovasc. Disord. 2018;18(1):193. doi: 10.1186/s12872-018-0936-8
91. Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V., Boshchenko A.A., Khaliulin I., Prasad N.R., Fu F., … Oeltgen P.R. Reperfusion cardiac injury: receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. doi: 10.2174/1573403X18666220413121730
92. Lin J., Wang H., Li J., Wang Q., Zhang S., Feng N., Fan R., Pei J. κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia–reperfusion. Cytokine. 2013;61(3):842–848. doi: 10.1016/j.cyto.2013.01.002
93. Popov S.V., Mukhomedzyanov A.V., Voronkov N.S., Derkachev I.A., Boshchenko A.A., Fu F., Sufianova G.Z., Khlestkina M.S., Maslov L.N. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 2023;28(1-2):55–80. doi: 10.1007/s10495-022-01786-1
94. Zuo Y., Zhang J., Cheng X., Li J., Yang Z., Liu X., Gu E., Zhang Y. Enhanced autophagic flux contributes to cardioprotection of remifentanil postconditioning after hypoxia/reoxygenation injury in H9c2 cardiomyocytes. Biochem. Biophys. Res. Commun. 2019;514(3):953–959. doi: 10.1016/j.bbrc.2019.05.068
95. Maslov L.N., Naryzhnaya N.V., Sirotina M., Mukhomedzyanov A.V., Kurbatov B.K., Boshchenko A.A., Ma H., Zhang Y., Fu F., Pei J., Azev V.N., Pereverzev V.A. Do reactive oxygen species damage or protect the heart in ischemia and reperfusion? Analysis on experimental and clinical data. J. Biomed. Res. 2023;37(4):268–280. doi: 10.7555/JBR.36.20220261
96. Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L., Wang H., Jaggi A.S., Downey J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. doi: 10.2174/1573403X14666180702152436
97. Yellon D.M., Downey J.M. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev. 2003;83(4):1113–1151. doi: 10.1152/physrev.00009.2003
98. Ryabov V.V., Maslov L.N., Vyshlov E.V., Mukhomedzyanov A.V., Kilin M., Gusakova S.V., Gombozhapova A.E., Panteleev O.O. Ferroptosis, a regulated form of cell death, as a target for the development of novel drugs preventing ischemia/reperfusion of cardiac injury, cardiomyopathy and stress-induced cardiac injury. Int. J. Mol. Sci. 2024;25(2):897. doi: 10.3390/ijms25020897
99. Gatshtein Kh., Akil Kh. Narcotic analgesics. In: Clinical pharmacology according to Goodman and Gilman. Eds. A.G. Gilman, J. Khardman, L. Liberd. Moscow: Praktika, 2006. P. 447–484. [In Russian].