Preview

Сибирский научный медицинский журнал

Расширенный поиск

Кардиопротекторный эффект пептидных и непептидных агонистов опиоидных рецепторов при реперфузии сердца: возможность клинического применения экспериментальных данных

https://doi.org/10.18699/SSMJ20250204

Аннотация

Летальность у пациентов с острым инфарктом миокарда составляет 5–8 % и не снижается в последние годы. Одной из причин смерти является реперфузионное повреждение сердца. Совершенно очевидно, что существует острая необходимость в разработке принципиально новых препаратов, которые могут эффективно снижать летальность при ОИМ. Такими препаратами могут стать опиоиды. Активация периферических µ2-, δ2-, κ1- опиоидных рецепторов уменьшает размер инфаркта и улучшает сократимость при реперфузии. Периферические µ1-, δ1-, κ2-рецепторы не участвуют в регуляции толерантности сердца к реперфузионному повреждению сердца. Опиоидное посткондиционирование ограничивает воспалительный процесс в миокарде, уменьшает микрососудистую обструкцию, подавляет апоптоз кардиомиоцитов и уменьшает неблагоприятное постинфарктное ремоделирование. Опиоиды могут снижать избыточную продукцию активных форм кислорода в реперфузируемом миокарде. Наиболее перспективными препаратами могут оказаться опиоидные пептиды, которые не проникают через гематоэнцефалический барьер и поэтому, в отличие от других опиоидов, не вызывают тошноту, рвоту и угнетение дыхания.

Об авторах

А. В. Мухомедзянов
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

 Мухомедзянов Александр Валерьевич, к.м.н. 

634012, г. Томск, ул. Киевская, 111а 



Л. Н. Маслов
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

Маслов Леонид Николаевич, д.м.н., проф.

634012, г. Томск, ул. Киевская, 111а 



С. В. Попов
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

Попов Сергей Валентинович, д.м.н., проф., акад. РАН

634012, г. Томск, ул. Киевская, 111а 



А. С. Слидневская
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

Слидневская Алиса Сергеевна

634012, г. Томск, ул. Киевская, 111а 



А. С. Кан
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

Кан Артур

634012, г. Томск, ул. Киевская, 111а 



Н. В. Нарыжная
НИИ кардиологии, Томский национальный исследовательский медицинский центр РАН
Россия

Нарыжная Наталья Владимировна, д.м.н.

634012, г. Томск, ул. Киевская, 111а 



Список литературы

1. Menees D.S., Peterson E.D., Wang Y., Curtis J.P., Messenger J.C., Rumsfeld J.S., Gurm H.S. Door-toballoon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013;369(10):901–909. doi: 10.1056/NEJMoa1208200

2. Fabris E., Kilic S., Schellings D.A.A.M., Ten Berg J.M., Kennedy M.W., van Houwelingen K.G., Giannitsis E., Kolkman E., Ottervanger J.P., Hamm C., Van’t Hof A.W.J. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart. 2017;103(19):1515–1520. doi: 10.1136/heartjnl-2017-311181

3. Vaidya S.R., Devarapally S.R., Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 2017;7(1):16–26. doi: 10.21037/cdt.2016.08.06

4. Olier I., Sirker A., Hildick-Smith D.J.R., Kinnaird T., Ludman P., de Belder M.A., Baumbach A., Byrne J., Rashid M., Curzen N., … British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart. 2018;104(20):1683–1690. doi: 10.1136/heartjnl-2017-312366

5. Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M., Mentias A., Elgendy I., Burke M.N., Capodanno D., Brilakis E.S. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. doi: 10.1016/j.carrev.2020.09.032

6. Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R., Siddal M.T., Ashraf M., Ashraf S., Ashraf S., … Saboor Q.A. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1 Pt B):102049. doi: 10.1016/j.cpcardiol.2023.102049

7. Барбараш О.Л., Печерина Т.Б. Современные пути снижения летальности при инфаркте миокарда. Что необходимо предпринять? Сиб. науч. мед. ж. 2023;43(5):6–13. doi: 10.18699/SSMJ20230501

8. McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart. J. Cardiovasc. Imaging. 2019;20(2):133–135. doi: 10.1093/ehjci/jey159

9. Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. doi: 10.1097/CRD.0000000000000190

10. Basir M.B., Lemor A., Gorgis S., Taylor A.M., Tehrani B., Truesdell A.G., Bharadwaj A., Kolski B., Patel K., Gelormini J., … National Cardiogenic Shock Initiative Investigators. Affiliations. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter. Cardiovasc. Interv. 2022;99(3):650–657. doi: 10.1002/ccd.29895

11. Пантелеев О.О., Рябов В.В. Кардиогенный шок – что нового? Сиб. ж. клин. и эксперим. мед. 2021;36(4):45–51. doi: 10.29001/2073-8552-2021-36-4-45-51

12. Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A., Brindis R., Bueno H., Rodrí- guez-Padial L., Marín F., … Anguita M. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. doi: 10.1111/eci.13526

13. Palacios Ordonez C., Garan A.R. The landscape of cardiogenic shock: epidemiology and current definitions. Curr. Opin. Cardiol. 2022;37(3):236–240. doi: 10.1097/HCO.0000000000000957

14. Omer M.A., Brilakis E.S., Kennedy K.F., Alkhouli M., Elgendy I.Y., Chan P.S., Spertus J.A. Multivessel versus culprit-vessel percutaneous coronary intervention in patients with non–ST-segment elevation myocardial infarction and cardiogenic shock. JACC. Cardiovasc. Interv. 2021;14(10):1067–1078. doi: 10.1016/j.jcin.2021.02.021

15. Maslov L.N., Naryzhnaya N.V., Popov S.V., Mukhomedzyanov A.V., Derkachev I.A., Kurbatov B.K., Krylatov A.V., Fu F., Pei J., Ryabov V.V., … Sarybaev A. A historical literature review of coronary microvascular obstruction and intra-myocardial hemorrhage as functional/structural phenomena. J. Biomed. Res. 2023;37(4):281–302. doi: 10.7555/JBR.37.20230021

16. Ryabov V.V., Vyshlov E.V., Maslov L.N., Naryzhnaya N.V., Mukhomedzyanov A.V., Boshchenko A.A., Derkachev I.A., Kurbatov B.K., Krylatov A.V., Gombozhapova A.E., … Diez E.R. The role of microvascular obstruction and intra-myocardial hemorrhage in reperfusion cardiac injury. analysis of clinical data. Rev. Cardiovasc. Med. 2024;25(3):105. doi: 10.31083/j.rcm2503105

17. Macut D., Ognjanović S., Ašanin M., Krljanać G., Milenković T. Metabolic syndrome and myocardial infarction in women. Curr. Pharm. Des. 2021;27(36):3786–3794. doi: 10.2174/1381612827666210610114029

18. Mao Q., Zhou D., Li Y., Wang Y., Xu S.C., Zhao X.H. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome. Dis. Markers. 2019;2019:6891537. doi: 10.1155/2019/6891537

19. Wang H.H., Jia S.D., Liu Y., Xu J.J., Gao Z., Song Y., Tang X.F., Jiang P., Zhao X.Y., Song L., … Gao L.J. The impact of metabolic syndrome and its individual components on long-term prognosis of patients undergoing percutaneous coronary intervention. Zhonghua Yi Xue Za Zhi. 2020;100(21):1623–1628. doi: 10.3760/cma.j.cn112137-20190920-02077

20. Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J., Brown S.A., Lishmanov Y.B., Downey J.M. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. doi: 10.1002/med.21395

21. Gross G.J., Auchampach J.A. Reperfusion injury: Does it exist? J. Mol. Cell. Cardiol. 2007;42(1):12–18. doi: 10.1016/j.yjmcc.2006.09.009

22. Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol. 2003;285(2):579–588. doi: 10.1152/ajpheart.01064.2002

23. Gross E.R., Hsu A.K., Gross G.J. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic. Res. Cardiol. 2007;102(4):341–349. doi: 10.1007/s00395-007-0651-6

24. Förster K., Kuno A., Solenkova N., Felix S.B., Krieg T. The δ-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation. Am. J. Physiol. Heart. Circ. Physiol. 2007;293(3):1604–1608. doi: 10.1152/ajpheart.00418.2007

25. Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo andin vitrocharacterization.Life Sci. 2007;81(15):1223–1227. doi: 10.1016/j.lfs.2007.08.031

26. Gross G. Role of opioids in acute and delayed preconditioning. J. Mol. Cell. Cardiol. 2003;35(7):709–718. doi: 10.1016/S0022-2828(03)00135-4

27. Chen Z., Li T., Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res. 2008;145(2):287–294. doi: 10.1016/j.jss.2007.07.020

28. Roques B., Gacel G., Daugé V., Baamonde A., Calenco G., Turcaud S., Coric P., Fournie-Zaluski M.C. Novel approaches in the development of new analgesics. Neurophysil. Clin. 1990;20(5):369–387. doi: 10.1016/S0987-7053(05)80205-9

29. Mourouzis I., Saranteas T., Perimenis P., Tesseromatis C., Kostopanagiotou G., Pantos C., Cokkinos D.V. Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation. Eur. J. Anaesthesiol. 2009;26(7):572–581. doi: 10.1097/EJA.0b013e32832a225a

30. Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the δ-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. doi: 10.1213/ANE.0b013e3181b92201

31. Wong G.T.C., Li R., Jiang L.L., Irwin M.G. Remifentanil post-conditioning attenuates cardiac ischemia–reperfusion injury via κ or δ opioid receptor activation. Acta. Anaesthesiol. Scand. 2010;54(4):510–518. doi: 10.1111/j.1399-6576.2009.02145.x

32. Huhn R., Heinen A., Weber N.C., Schlack W., Preckel B., Hollmann M.W. Ischaemic and morphine-induced post-conditioning: impact of mKCa channels. Br. J. Anaesth. 2010;105(5):589–595. doi: 10.1093/bja/aeq213

33. Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H., Lee M.Y., Park J.H. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean. J. Anesthesiol. 2011;61(1):69–74. doi: 10.4097/kjae.2011.61.1.69

34. Chen Z., Liu R., Niu Q., Wang H., Yang Z., Bao Y. Morphine postconditioning alleviates autophage in ischemia-reperfusion induced cardiac injury through up-regulating lncRNA UCA1. Biomed. Pharmacother. 2018;108:1357–1364. doi: 10.1016/j.biopha.2018.09.119

35. Chen Z., Zhang X., Liu Y., Liu Z. Morphine postconditioning protects against reperfusion injury via inhibiting JNK/p38 MAPK and mitochondrial permeability transition pores signaling pathways. Cell. Physiol. Biochem. 2016;39(1):61–70. doi: 10.1159/000445605

36. Chen Z., Spahn D.R., Zhang X., Liu Y., Chu H., Liu Z. Morphine postconditioning protects against reperfusion injury: the role of protein kinase c-epsilon, extracellular signal-regulated kinase 1/2 and mitochondrial permeability transition pores. Cell. Physiol. Biochem. 2016;39(5):1930–1940. doi: 10.1159/000447890

37. Lei Y., Li X.X., Guo Z. Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Eur. J. Pharmacol. 2022;928:175094. doi: 10.1016/j.ejphar.2022.175094

38. Wu Y., Gu E.W., Zhu Y., Zhang L., Liu X.Q., Fang W.P. Sufentanil limits the myocardial infarct size by preservation of the phosphorylated connexin 43. Int. Immunopharmacol. 2012;13(3):341–346. doi: 10.1016/j.intimp.2012.04.009

39. Tao H., Nuo M., Min S. Sufentanil protects the rat myocardium against ischemia–reperfusion injury via activation of the ERK1/2 pathway. Cytotechnology. 2018;70(1):169–176. doi: 10.1007/s10616-017-0127-y

40. Ha J.Y., Lee Y.C., Park S.J., Jang Y.H., Kim J.H. Remifentanil postconditioning has cross talk with adenosine receptors in the ischemic-reperfused rat heart. J. Surg. Res. 2015;195(1):37–43. doi: 10.1016/j.jss.2015.01.010

41. Lin P.T., Chen W.H., Zheng H., Lai Z.M., Zhang L.C. Involvement of AQP 1 in the cardioprotective effect of remifentanil post-conditioning in ischemia/reperfusion rats. Int. J. Clin. Exp. Med. 2015;8(8):12736–12745.

42. Chen M., Liu Q., Chen L., Zhang L., Cheng X., Gu E. HDAC3 Mediates cardioprotection of remifentanil postconditioning by targeting GSK-3β in H9c2 cardiomyocytes in hypoxia/reoxygenation injury. Shock. 2018;50(2):240–247. doi: 10.1097/SHK.0000000000001008

43. James M.K., Feldman P.L., Schuster S.V., Bilotta J.M., Brackeen M.F., Leighton H.J. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J. Pharmacol. Exp. Ther. 1991;259(2):712–718.

44. Xu J., Bian X., Zhao H., Sun Y., Tian Y., Li X., Tian W. Morphine prevents ischemia/reperfusion-induced myocardial mitochondrial damage by activating δ-opioid receptor/EGFR/ROS pathway. Cardiovasc. Drugs Ther. 2022;36(5):841–857. doi: 10.1007/s10557-021-07215-w

45. Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454–463. doi: 10.1007/s00395-008-0726-z

46. Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S., Kim J.M., Lee M.Y. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. doi: 10.4097/kjae.2011.60.5.351

47. Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S., Kaye A.D., Huang L., Pei J. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia–reperfusion in rat heart. Cytokine. 2011;56(2):503–507. doi: 10.1016/j.cyto.2011.07.015

48. Wu Y., Wan J., Zhen W.Z., Chen L.F., Zhan J., Ke J.J., Zhang Z.Z., Wang Y.L. The effect of butorphanol postconditioning on myocardial ischaemia reperfusion injury in rats. Interact. Cardiovasc. Thorac. Surg. 2014;18(3):308–312. doi: 10.1093/icvts/ivt516

49. Huang L., Li J., Gu J., Qu M.X., Yu J., Wang Z.Y. Butorphanol attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis in mice. Eur. Rev. Med. Pharmacol. Sci. 2018;22(6):1819–1824. doi: 10.26355/eurrev_201803_14601

50. Tsibulnikov S.Yu., Maslov L.N., Mukhomedzyanov A.V., Krylatov A.V., Tsibulnikova M.R., Lishmanov Yu.B. Prospects of using of κ-opioid receptor agonists U-50,488 and ICI 199,441 for improving heart resistance to ischemia/reperfusion. Bull. Exp. Biol. Med. 2015;159(6):718–721. doi: 10.1007/s10517-015-3057-8

51. Popov S.V., Mukhomedzyanov A.V., Tsibulnikov S.Y., Khaliulin I., Oeltgen P.R., Rajendra Prasad N., Maslov L.N. Activation of peripheral opioid κ1 receptor prevents cardiac reperfusion injury. Physiol. Res. 2021;70(4):523–531. doi: 10.33549/physiolres.934646

52. Mukhomedzyanov A.V., Tsibulnikov S.Yu., Maslov L.N. Comparative analysis of infarct size limiting activity of κ-opioid receptor agonists in in vivo reperfused heart. Bull. Exp. Biol. Med. 2021;170(5):594–597. doi: 10.1007/s10517-021-05113-7

53. Zhang S., Zhou Y., Zhao L., Tian X., Jia M., Gu X., Feng N., An R., Yang L., Zheng G., … Pei J. κ-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation. Eur. J. Pharmacol. 2018;833:100–108. doi: 10.1016/j.ejphar.2018.05.043

54. Tian X., Zhou Y., Wang Y., Zhang S., Feng J., Wang X., Guo H., Fan R., Feng N., Jia M., … Pei J. Mitochondrial dysfunction and apoptosis are attenuated on κ-opioid receptor activation through AMPK/GSK-3β pathway after myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 2019;73(2):70–81. doi: 10.1097/FJC.0000000000000635

55. Zhang W.P., Zong Q.F., Gao Q., Yu Y., Gu X.Y., Wang Y., Li Z.H., Ge M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol. Med. Rep. 2016;14(4):3992–3998. doi: 10.3892/mmr.2016.5695

56. Wu S., Zhang L., Fan H., Huang Y., Zong Q., Gao Q., Li Z. PI3K/Akt signaling pathway mediates the protective effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan. Fang. Yi Ke Da Xue Xue Bao. 2021;41(6):870–875. doi: 10.12122/j.issn.1673-4254.2021.06.09

57. Huang Y.P., Yang T.H., Jin Z.Y., Wang Y., Ye H.W., Gao Q., Li Z.H. Role of mitochondrial permeability transition pore in mediating the effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan. Fang Yi. Ke Da Xue Xue Bao. 2018;38(5):547–553. doi: 10.3969/j.issn.1673-4254.2018.05.07

58. Mukhomedzyanov A.V., Maslov L.N., Tsibulnikov S.Yu., Pei J.M. Endomorphins and β-endorphin do not affect heart tolerance to the pathogenic effect of reperfusion. Bull. Exp. Biol. Med. 2016;162(1):23–26. doi: 10.1007/s10517-016-3535-7

59. He S.F., Jin S.Y., Yang W., Pan Y.L., Huang J., Zhang S.J., Zhang L., Zhang Y. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br. J. Anaesth. 2018;121(1):26–37. doi: 10.1016/j.bja.2017.11.110

60. Goldberg I.E., Rossi G.C., Letchworth S.R., Mathis J.P., Ryan-Moro J., Leventhal L., Su W., Emmel D., Bolan E.A., Pasternak G.W. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Pharmacol. Exp. Ther. 1998;286(2):1007–1013.

61. Aitchison K.A., Baxter G.F., Moneeb Awan M., Smith R.M., Yellon D.M., Opie L.H. Opposing effects on infarction of delta and kappa opioid receptor activation in the isolated rat heart: implications for ischemic preconditioning. Basic. Res. Cardiol. 2000;95(1):1–10. doi: 10.1007/s003950050001

62. Zhu Y., Chi J., Cai S., Liu S., Yuan J., Xu H., Zhou H. High-dose remifentanil exacerbates myocardial ischemia-reperfusion injury through activation of calcium-sensing receptor-mediated pyroptosis. Int. J. Med. Sci. 2023;20(12):1570–1583. doi: 10.7150/ijms.83207

63. Schultz J.E.J., Hsu A.K., Nagase H., Gross G.J. TAN-67, a δ1-opioid receptor agonist, reduces infarct size via activation of G i/o proteins and KATP channels. Am. J. Physiol. 1998;274(3):909–914. doi: 10.1152/ajpheart.1998.274.3.H909

64. Huh J., Gross G.J., Nagase H., Liang B.T. Protection of cardiac myocytes via δ1 -opioid receptors, protein kinase C, and mitochondrial K ATP channels. Am. J. Physiol. Heart. Circ. Physiol. 2001;280(1):377–383. doi: 10.1152/ajpheart.2001.280.1.H377

65. Mukhomedzyanov A.V., Tsibulnikov S.Yu., Krylatov A.V., Maslov L.N. Comparative analysis of infarct size limiting activity of δ-opioid receptor agonists in reperfused heart in vivo. Bull. Exp. Biol. Med. 2021;170(5):604–607. doi: 10.1007/s10517-021-05115-5

66. Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. doi: 10.1016/j.ejphar.2021.174302

67. Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R., Singh N., Fu F., Azev V.N. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: the molecular mechanism. Membranes (Basel). 2023;13(1):63. doi: 10.3390/membranes13010063

68. Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Эксперим. и клин. фармакол. 2017; 80(6): 39–44.

69. Mukhomedzyanov A.V., Popov S.V., Naryzhnaya N.V., Azev V.N., Maslov L.N. The role of δ2- opioid receptors in the regulation of tolerance of isolated cardiomyocytes to hypoxia and reoxygenation. Bull. Exp. Biol. Med. 2024;176(4):433–436. doi: 10.1007/s10517-024-06041-y

70. Hou J., Wang H., Li X., Zhu Y. Remifentanil functions in the adaptive protection of cardiac function following ischemia. Exp. Ther. Med. 2017;13(4):1514–1520. doi: 10.3892/etm.2017.4124

71. Zhao S., Zhang C., Pi Z., Li R., Han P., Guo L. Oxycodone protects cardiomyocytes from ischemia-reperfusion-induced apoptosis via PI3K/Akt pathway. Pharmazie. 2020;75(9):430–435. doi: 10.1691/ph.2020.0497

72. Seewald M., Coles J.A., Sigg D.C., Iaizzo P.A. Featured Article: Pharmacological postconditioning with delta opioid attenuates myocardial reperfusion injury in isolated porcine hearts. Exp. Biol. Med. (Maywood). 2017;242(9):986–995. doi: 10.1177/1535370216684041

73. Stiermaier T., Schaefer P., Meyer-Saraei R., Saad M., de Waha-Thiele S., Pöss J., Fuernau G., Graf T., Kurz T., Frydrychowicz A., … Eitel I. Impact of morphine treatment with and without metoclopramide coadministration on myocardial and microvascular injury in acute myocardial infarction: insights from the randomized MonAMI trial. J. Am. Heart. Assoc. 2021;10(9):e018881. doi: 10.1161/JAHA.120.018881

74. Li X., Gui Z., Liu H., Qian S., Jia Y., Luo X. Remifentanil pretreatment ameliorates H/R-induced cardiac microvascular endothelial cell dysfunction by regulating the PI3K/Akt/HIF-1α signaling pathway. Bioengineered. 2021;12(1):7872–7881. doi: 10.1080/21655979.2021.1969843

75. Tong G., Zhang B., Zhou X., Zhao J., Sun Z., Tao Y., Pei J., Zhang W. Kappa-opioid agonist U50,488H-mediated protection against heart failure following myocardial ischemia/reperfusion: dual roles of heme oxygenase-1. Cell. Physiol. Biochem. 2016;39(6):2158–2172. doi: 10.1159/000447911

76. Rajani S.F., Imani A., Faghihi M., Izad M., Kardar G.A., Salehi Z. Post-infarct morphine treatment mitigates left ventricular remodeling and dysfunction in a rat model of ischemia-reperfusion. Eur. J. Pharmacol. 2019;847:61–71. doi: 10.1016/j.ejphar.2019.01.023

77. Rajani S.F., Faghihi M., Imani A. Post-infarct morphine treatment reduces apoptosis and myofibroblast density in a rat model of cardiac ischemia-reperfusion. Eur. J. Pharmacol. 2020;887:173590. doi: 10.1016/j.ejphar.2020.173590

78. Chen Q.L., Gu E.W., Zhang L., Cao Y.Y., Zhu Y., Fang W.P. Diabetes mellitus abrogates the cardioprotection of sufentanil against ischaemia/reperfusion injury by altering glycogen synthase kinase-3β. Acta Anaesthesiol. Scand. 2013;57(2):236–242. doi: 10.1111/j.1399-6576.2012.02748.x

79. Zhang Y., Zhang L., Gu E., Zhu B., Zhao X., Chen J. Long-term insulin treatment restores cardioprotection induced by sufentanil postconditioning in diabetic rat heart. Exp. Biol. Med. (Maywood). 2016;241(6):650–657. doi: 10.1177/1535370215622706

80. Chen L., Chen M., Du J., Wan L., Zhang L., Gu E. Hyperglycemia attenuates remifentanil postconditioning-induced cardioprotection against hypoxia/reoxygenation injury in H9c2 cardiomyoblasts. J. Surg. Res. 2016;203(2):483–490. doi: 10.1016/j.jss.2016.03.052

81. Chen X., Zhao S., Xia Y., Xiong Z., Li Y., Tao L., Zhang F., Wang X. G protein coupled receptor kinase-2 upregulation causes κ-opioid receptor desensitization in diabetic heart. Biochem. Biophys. Res. Commun. 2017;482(4):658–664. doi: 10.1016/j.bbrc.2016.11.090

82. Zemljic-Harpf A.E., See Hoe L.E., Schilling J.M., Zuniga-Hertz J.P., Nguyen A., Vaishnav Y.J., Belza G.J., Budiono B.P., Patel P.M., Head B.P., … Patel H.H. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB. J. 2021;35(3):e21407. doi: 10.1096/fj.201903233R

83. Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.N., Oeltgen P.R. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. doi: 10.1016/j.exger.2021.111543

84. Fuardo M., Lemoine S., Coco C.L., Hanouz J.L., Massetti M. [D-Ala2, D-Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium. Exp. Biol. Med. (Maywood). 2013;238(4):426–432. doi: 10.1177/1535370212474602

85. Kunecki M., Płazak W., Roleder T., Biernat J., Oleksy T., Podolec P., Gołba K.S. “Opioidergic postconditioning” of heart muscle during ischemia/reperfusion injury. Cardiol. J. 2017;24(4):419–426. doi: 10.5603/CJ.a2016.0090

86. Kunecki M., Roleder T., Biernat J., Kukla P., Tomkiewicz-Pająk L., Deja M., Podolec P., Gołba K.S., Płazak W. Opioidergic conditioning of the human heart muscle in nitric oxide-dependent mechanism. Adv. Clin. Exp. Med. 2018;27(8):1069–1073. doi: 10.17219/acem/70192

87. de Waha S., Eitel I., Desch S., Fuernau G., Lurz P., Urban D., Schuler G., Thiele H. Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin. Res. Cardiol. 2015;104(9):727–734. doi: 10.1007/s00392-015-0835-2

88. Gwag H.B., Kim E.K., Park T.K., Lee J.M., Yang J.H., Song Y. B., Choi J.H., Choi S.H., Lee S.H., Chang S.A., … Hahn J.Y. Cardioprotective effects of intracoronary morphine in st-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: a prospective, randomized trial. J. Am. Heart. Assoc. 2017;6(4 ):e005426. doi: 10.1161/JAHA.116.005426

89. Farag M., Spinthakis N., Srinivasan M., Sullivan K., Wellsted D., Gorog D. Morphine analgesia Pre-PPCI Is associated with prothrombotic state, reduced spontaneous reperfusion and greater infarct size. Thromb. Haemost. 2018;118(3):601–612. doi: 10.1055/s-0038-1629896

90. Le Corvoisier P., Gallet R., Lesault P.F., Audureau E., Paul M., Ternacle J., Ghostine S., Champagne S., Arrouasse R., Bitari D., … Teiger E. Intra-coronary morphine versus placebo in the treatment of acute ST-segment elevation myocardial infarction: the MIAMI randomized controlled trial. BMC. Cardiovasc. Disord. 2018;18(1):193. doi: 10.1186/s12872-018-0936-8

91. Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V., Boshchenko A.A., Khaliulin I., Prasad N.R., Fu F., … Oeltgen P.R. Reperfusion cardiac injury: receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. doi: 10.2174/1573403X18666220413121730

92. Lin J., Wang H., Li J., Wang Q., Zhang S., Feng N., Fan R., Pei J. κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia–reperfusion. Cytokine. 2013;61(3):842–848. doi: 10.1016/j.cyto.2013.01.002

93. Popov S.V., Mukhomedzyanov A.V., Voronkov N.S., Derkachev I.A., Boshchenko A.A., Fu F., Sufianova G.Z., Khlestkina M.S., Maslov L.N. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 2023;28(1-2):55–80. doi: 10.1007/s10495-022-01786-1

94. Zuo Y., Zhang J., Cheng X., Li J., Yang Z., Liu X., Gu E., Zhang Y. Enhanced autophagic flux contributes to cardioprotection of remifentanil postconditioning after hypoxia/reoxygenation injury in H9c2 cardiomyocytes. Biochem. Biophys. Res. Commun. 2019;514(3):953–959. doi: 10.1016/j.bbrc.2019.05.068

95. Maslov L.N., Naryzhnaya N.V., Sirotina M., Mukhomedzyanov A.V., Kurbatov B.K., Boshchenko A.A., Ma H., Zhang Y., Fu F., Pei J., Azev V.N., Pereverzev V.A. Do reactive oxygen species damage or protect the heart in ischemia and reperfusion? Analysis on experimental and clinical data. J. Biomed. Res. 2023;37(4):268–280. doi: 10.7555/JBR.36.20220261

96. Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L., Wang H., Jaggi A.S., Downey J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. doi: 10.2174/1573403X14666180702152436

97. Yellon D.M., Downey J.M. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev. 2003;83(4):1113–1151. doi: 10.1152/physrev.00009.2003

98. Ryabov V.V., Maslov L.N., Vyshlov E.V., Mukhomedzyanov A.V., Kilin M., Gusakova S.V., Gombozhapova A.E., Panteleev O.O. Ferroptosis, a regulated form of cell death, as a target for the development of novel drugs preventing ischemia/reperfusion of cardiac injury, cardiomyopathy and stress-induced cardiac injury. Int. J. Mol. Sci. 2024;25(2):897. doi: 10.3390/ijms25020897

99. Гатштейн Х., Акил Х. Наркотические анальгетики. Гл. 23. В кн.: Клиническая фармакология по Гудману и Гилману. Ред. А.Г. Гилман, Дж. Хардман, Л. Либерд. М.: Практика, 2006. C. 447–484.


Рецензия

Для цитирования:


Мухомедзянов А.В., Маслов Л.Н., Попов С.В., Слидневская А.С., Кан А.С., Нарыжная Н.В. Кардиопротекторный эффект пептидных и непептидных агонистов опиоидных рецепторов при реперфузии сердца: возможность клинического применения экспериментальных данных. Сибирский научный медицинский журнал. 2025;45(2):41-56. https://doi.org/10.18699/SSMJ20250204

For citation:


Mukhomedzyanov A.V., Maslov L.N., Popov S.V., Slidnevskaya A.S., Kan A., Naryzhnaya N.V. Cardioprotective effect of peptide and non-peptide opioid receptor agonists in cardiac reperfusion: potential clinical application of experimental data. Сибирский научный медицинский журнал. 2025;45(2):41-56. (In Russ.) https://doi.org/10.18699/SSMJ20250204

Просмотров: 469


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)