Umbilical cord and cord blood cells promising for biobanking
https://doi.org/10.18699/SSMJ20250203
Abstract
Biobanks are created and operate in the interests of state security and the treatment of socially significant diseases. The high demand for biobanking of umbilical cord and cord blood has led to the emergence of specialized structures – Umbilical Cord Blood Banks.
The aim was to systematize the literature data on the cellular composition of the umbilical cord and umbilical cord blood as an object of biobanking.
Material and methods. The review includes literature sources containing data on the cellular composition of the umbilical cord and umbilical cord blood as an object of biobanking, provided by the eLibrary, PubMed, and Scopus databases.
Results and discussion. Umbilical cord blood is significantly different from the blood of a newborn, even in the first hours of his life. The umbilical cord and umbilical cord blood contain stem cells (mesenchymal, hematopoietic, neural, very small embryonic-like, endothelial progenitors), differentiated cells of the hematogenous differon (monocytes, granulocytes, lymphocytes), as well as exosomes secreted by all of them. Differentiated cells of hematogenous differon are characterized by a decrease in phagocytic and cytotoxic activity, which is associated with the ability of mononuclear cell exosomes to inhibit inflammation, cell proliferation and cytokine production, and promote the transition from the Th1 or Th17 phenotype to the T-regulatory lymphocyte phenotype. Umbilical cord blood is a rich source of T cells with potent suppressive activity. Depending on the producing cell, exosomes may have different modulating characteristics. Mesenchymal stem cells of the umbilical cord are distinguished by high clonogenic potential, proliferative activity and a relatively low ability to differentiate towards the adipocyte lineage. The presence of neural stem cells in umbilical cord blood may explain the high effectiveness of cell therapy for damage to the nervous system using umbilical cord and umbilical cord blood.
Conclusions. Biobanking of umbilical cord cells and umbilical cord blood is a promising area of regenerative medicine. The greatest prospects in the field of cell therapy and exosome production are opened by separate cryopreservation of mesenchymal, hematopoietic, neural and very small embryonic-like stem cells. A source of additional information for the development of this area can be the study of the natural microenvironment of stem cells - umbilical cord blood leukocytes, as well as the development of applied aspects of biobanking of umbilical cord and umbilical cord blood and annotation of the cellular composition of bio-samples.
About the Authors
V. V. ChrishtopRussian Federation
Vladimir V. Chrishtop, candidate of medical sciences
194044, Saint-Petersburg, Akademika Lebedeva st., 6Zh
M. I. Lobanova
Russian Federation
Maya I. Lobanova
119160, Moscow, Znamenka st., 14
R. I. Glushakov
Russian Federation
Ruslan I. Glushakov, doctor of medical sciences
194044, Saint-Petersburg, Akademika Lebedeva st., 6Zh
A. A. Semenov
Russian Federation
Aleksey A. Semenov, candidate of medical sciences
194044, Saint-Petersburg, Akademika Lebedeva st., 6Zh
199034, Saint-Petersburg, Universitetskaya emb., 7–9
D. V. Ovchinnikov
Russian Federation
Dmitrii V. Ovchinnikov, candidate of medical sciences
194044, Saint-Petersburg, Akademika Lebedeva st., 6Zh
A. V. Anisin
Russian Federation
Aleksey V. Anisin, candidate of medical sciences
194044, Saint-Petersburg, Akademika Lebedeva st., 6Zh
References
1. Reznik O.N., Kuzmin D.O., Skvortsov A.E., Reznik A.O. Biobanks are an essential tool for transplantation. History, current state, perspectives. Vestnik transplantologii i iskusstvennykh organov = Russian Journal of Transplantology and Artificial Organs. 2016;18(4):123–132. [In Russian]. doi: 10.15825/1995-1191-2016-4-123-132
2. Mentkevich G.L., Isaev A.A., Prikhodko A.V., Potapov I.V., Deev R.V. On the current status and prospects for the development of clinically significant cell technologies: do not interfere! Geny i kletki = Genes and Cells. 2020;15(4):6–13. [In Russian]. doi: 10.23868/202012001
3. Romanov Yu.A., Romanov A.Yu. Tissues of perinatal origin is a unique source of cells for regenerative medicine. Part I. Cord blood. Neonatologiya: novosti, mneniya, obuchenie = Neonatology: News, Opinions, Training. 2018;6(2):64–67. [In Russian].
4. Romanov Y.A., Vtorushina V.V., Dugina T.N., Romanov A.Y., Petrova N.V. Human umbilical cord blood serum/plasma: cytokine profile and prospective application in regenerative medicine. Bull. Exp. Biol. Med. 2019;168(1):173–177. doi: 10.1007/s10517-019-04670-2
5. Mikhailova A.A., Nasykhova Yu.A., Muravyov A.I., Efimenko A.Yu., Glotov A.S. Towards the creation of a unified glossary of Russian biobanks. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2020;19(6):134–148. [In Russian]. doi:10.15829/1728-8800-2020-2710
6. Sokolova T.S., Kamenskikh E.M., Boguta D.V., Bakhareva Yu.O., Fedorova O.S. Training in biobanking in the context of modern medical education. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2022;21(11):97–104. [In Russian]. doi:10.15829/1728-8800-2022-3380
7. Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19–31. doi: 10.1002/cyto.a.23242
8. Ibragimov R.Sh., Raikina E.V., Osipova E.Yu., Maiorova O.A., Yakovleva M.V., Rumiantsev S.A. Cell composition of cord blood and G-SCF-mobilized blood transplantational material. Meditsinskiy vestnik Yuga Rossii = Medical Herald of the South of Russia. 2010;(2):26–34. [In Russian].
9. Hanna N., Vasquez P., Pham P., Heck D.E., Laskin J.D., Laskin D.L., Weinberger B. Mechanisms underlying reduced apoptosis in neonatal neutrophils. Pediatr. Res. 2005;57(1):56–62. doi: 10.1203/01.PDR.0000147568.14392.F0
10. Kraft J.D., Horzempa J., Davis C., Jung J.Y., Peña M.M., Robinson C.M. Neonatal macrophages express elevated levels of interleukin-27 that oppose immune responses. Immunology. 2013;139(4):484–493. doi: 10.1111/imm.12095
11. Hendricks D.W., Fink P.J. Recent thymic emigrants are biased against the T-helper type 1 and toward the T-helper type 2 effector lineage. Blood. 2011;117(4):1239–1249. doi: 10.1182/blood-2010-07-299263
12. Basha S., Surendran N., Pichichero M. Immune responses in neonates. Expert Rev. Clin. Immunol. 2014;10(9):1171–1184. doi: 10.1586/1744666X.2014.942288
13. Krueger J.G., Wharton K.A. Jr., Schlitt T., Suprun M., Torene R.I., Jiang X., Wang C.Q., Fuentes-Duculan J., Hartmann N., Peters T., … Hueber W. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J. Allergy Clin. Immunol. 2019;144(3):750–763. doi: 10.1016/j.jaci.2019.04.029
14. Lai P., Weng J., Guo L., Chen X., Du X. Novel insights into MSC-EVs therapy for immune diseases. Biomark. Res. 2019;7:6. doi: 10.1186/s40364-019-0156-0
15. Engelmann I., Moeller U., Santamaria A., Kremsner P.G., Luty A.J. Differing activation status and immune effector molecule expression profiles of neonatal and maternal lymphocytes in an African population. Immunology. 2006;119(4):515–521. doi: 10.1111/j.1365-2567.2006.02466.x
16. Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70-. J. Exp. Med. 2011;208(1):67–80. doi: 10.1084/jem.20101499
17. Ivarsson M.A., Loh L., Marquardt N., Kekäläinen E., Berglin L., Björkström N.K., Westgren M., Nixon D.F., Michaëlsson J. Differentiation and functional regulation of human fetal NK cells. J. Clin. Invest. 2013;123(9):3889–3901. doi: 10.1172/JCI68989
18. Rani S., Ryan A.E., Griffin M.D., Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol. Ther. 2015;23(5):812–823. doi: 10.1038/mt.2015.44
19. Biobanking and cryopreservation of stem cells. Eds.: F. Karimi-Busheri, M. Weinfeld. Switzerland: Springer, 2016. 951 p. doi: 10.1007/978-3-319-45457-3
20. Tyumina O.V., Volchkov S.E., Ovchinnikov P.A., Bugakov A.I., Potapov I.V., Prihodko A.V., Prihodko E.M., Komarova O.V. Analysis of the activities of cord blood banks in the Russian Federation. Geny i kletki = Genes and Cells. 2023;18(3):205–218. [In Russian]. doi: 10.23868/gc486812
21. Andrzejewska A., Lukomska B., Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37(7):855–864. doi: 10.1002/Stem3016
22. Bajpai V.K., Mistriotis P., Andreadis S.T. Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res. 2012;8(1):74–84. doi: 10.1016/j.scr.2011.07.003
23. Zhang X., Hirai M., Cantero S., Ciubotariu R., Dobrila L., Hirsh A., Igura K., Satoh H., Yokomi I., Nishimura T., … Takahashi T.A. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J. Cell. Biochem. 2011;112(4):1206–1218. doi: 10.1002/jcb.23042
24. Heo J.S., Choi Y., Kim H.S., Kim H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med. 2016;37(1):115–125. doi: 10.3892/ijmm.2015.2413
25. Morigi M., Rota C., Montemurro T., Montelatici E., Lo Cicero V., Imberti B., Abbate M., Zoja C., Cassis P., Longaretti L., … Lazzari L. Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells. 2010;28(3):513–522. doi: 10.1002/stem.293
26. El O.R., Beroud J., Stoltz J.F., Menu P., Velot E., Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng. Part B. Rev. 2014;20(5):523–544. doi: 10.1089/ten.TEB.2013.0664
27. Litvinova L.S., Goncharov A.G., Shupletsova V.V., Gazatova N.D., Melashchenko O.B., Yurova K.A., Pestrikova A.A. Analysis of the legal regulation of the use of umbilical cord blood and its components in the Russian Federation and abroad. Geny i kletki = Genes and Cells. 2020;15(4):88–94. [In Russian]. doi: 10.23868/202012014
28. Kluth S.M., Buchheiser A., Houben A.P., Geyh S., Krenz T., Radke T.F., Wiek C., Hanenberg H., Reinecke P., Wernet P., Kögler G. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev. 2010;19(10):1471–1483. doi: 10.1089/scd.2010.0070
29. Jurga M., Forraz N., Basford C., Atzeni G., Trevelyan A.J., Habibollah S., Ali H., Zwolinski S.A., McGuckin C.P. Neurogenic properties and a clinical relevance of multipotent stem cells derived from cord blood samples stored in the biobanks. Stem Cells Dev. 2012;21(6):923–936. doi: 10.1089/scd.2011.0224
30. Seita J., Weissman I.L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010;2(6):640–653. doi: 10.1002/wsbm.86
31. Kit O.I., Gnennaya N.V., Filippova S.Yu., Chembarova T.V., Lysenko I.B., Novikova I.A., Rozenko L.Ya., Dimitriadi S.N., Shalashnaya E.V., Ishonina O.G. Cryostorage of peripheral blood hematopoietic stem cells in transplantology: current status and prospects. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2023;22(11):3691. [In Russian]. doi: 10.15829/1728-8800-2023-3691
32. Flores-Guzmán P., Fernández-Sánchez V., Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl. Med. 2013;2(11):830–838. doi: 10.5966/sctm.2013-0071
33. McGuckin C., Jurga M., Ali H., Strbad M., Forraz N. Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat. Protoc. 2008;3(6):1046–1055. doi: 10.1038/nprot.2008.69
34. Ding D.C., Chang Y.H., Shyu W.C., Lin S.Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339-347. doi: 10.3727/096368915X686841
35. Ratajczak M.Z., Kucia M., Jadczyk T., Greco N.J., Wojakowski W., Tendera M., Ratajczak J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cellsecreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012;26(6):1166–1173. doi: 10.1038/leu.2011.389
36. Shin D.M., Liu R., Klich I., Wu W., Ratajczak J., Kucia M., Ratajczak M.Z. Molecular signature of adult bone marrow-purified very small embryoniclike stem cells supports their developmental epiblast/germ line origin. Leukemia. 2010;24(8):1450–1461. doi: 10.1038/leu.2010.121
37. Camussi G., Deregibus M.C., Tetta C. Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr. Opin. Nephrol. Hypertens. 2010;19(1):7–12. doi: 10.1097/MNH.0b013e328332fb6f
38. Del Fattore A., Luciano R., Pascucci L., Goffredo B.M., Giorda E., Scapaticci M., Fierabracci A., Muraca M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615–2627. doi: 10.3727/096368915X687543
39. Hartwig T., Zwicky P., Schreiner B., Yawalkar N., Cheng P., Navarini A., Dummer R., Flatz L., Conrad C., Schlapbach C., Becher B. Regulatory T cells restrain pathogenic T helper cells during skin inflammation. Cell Rep. 2018;25(13):3564–3572.e4. doi: 10.1016/j.celrep.2018.12.012
40. Lim H.W., Collins S.A.B., Resneck J.S. Jr., Bolognia J.L., Hodge J.A., Rohrer T.A., Van Beek M.J., Margolis D.J., Sober A.J., Weinstock M.A., … Moyano J.V. The burden of skin disease in the United States. J. Am. Acad. Dermatol. 2017;76(5):958–972.e2. doi: 10.1016/j.jaad.2016.12.043
41. Di Trapani M., Bassi G., Midolo M., Gatti A., Kamga P.T., Cassaro A., Carusone R., Adamo A., Krampera M. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci. Rep. 2016;6:24120. doi: 10.1038/srep24120
42. Rodrigues S.C., Cardoso R.M.S., Freire P.C., Gomes C.F., Duarte F.V., Neves R.P.D., Simões-Correia J. Immunomodulatory properties of umbilical cord blood-derived small extracellular vesicles and their therapeutic potential for inflammatory skin disorders. Int. J. Mol. Sci. 2021;22(18):9797. doi: 10.3390/ijms22189797
43. Zhang B., Wu X., Zhang X., Sun Y., Yan Y., Shi H., Zhu Y., Wu L., Pan Z., Zhu W., Qian H., Xu W. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl. Med. 2015;4(5):513–522. doi: 10.5966/sctm.2014-0267
44. Chen Y., Qian H., Zhu W., Zhang X., Yan Y., Ye S., Peng X., Li W., Xu W. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 2011;20(1):103–113. doi: 10.1089/scd.2009.0495
45. Yoo S.Y., Kwon S.M. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013;2013:127170. doi: 10.1155/2013/127170
46. Ma D., Xu K., Zhang G., Liu Y., Gao J., Tian M., Wei C., Li J., Zhang L. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int. Immunopharmacol. 2019;74:105687. doi: 10.1016/j.intimp.2019.105687