Immunogenicity of experimental DNA vaccines encoding hemagglutinin and hemagglutinin stalk of influenza A (H5N8) virus
https://doi.org/10.18699/SSMJ20250111
Abstract
Avian influenza A virus subtype H5 is widespread in the bird population, and there is a risk of its transmission to humans, therefore, it is necessary to develop an effective vaccine to prevent virus spread.
The aim of the work was to develop prototypes of DNA vaccines encoding modified variants of the hemagglutinin trimer of highly pathogenic avian influenza A virus (H5N8) and its fragment (stem) and to study their immunogenic properties.
Material and methods. DNA constructs were designed, produced and purified, their expression was analyzed in eukaryotic cells using reverse transcription PCR and Western blot analysis. Laboratory animals (Syrian hamsters) were immunized with experimental DNA vaccines using the jet injection method, the antibody titer in their sera was determined using ELISA. The sera were also tested in the virus neutralization reaction in MDCK cell culture.
Results and discussion. Expression of target genes in experimental DNA vaccines was confirmed at the transcription and translation levels. Immunogenicity analysis showed that immunization of Syrian hamsters with pVAX-H5 and pVAX-H5 delT4 constructs encoding hemagglutinin ectodomain variants with and without the fibritin trimerizing domain of bacteriophage T4 using jet injection resulted in the formation of specific antibodies (average titer 1:3×104 and 1:5×103, respectively) with virus-neutralizing activity (average 50 % neutralizing titer 1:40). At the same time, specific antibodies were not detected in the group of animals immunized with the DNA vaccine encoding the hemagglutinin stalk.
Conclusions. In the course of the work, DNA vaccines encoding variants of the hemagglutinin trimer of the influenza virus subtype A (H5N8) and its fragment (stem) were designed and obtained. A comparison of the immunogenicity of experimental DNA vaccines was conducted and the most promising variant of the design – pVAX-H5, encoding a modified trimer of the hemagglutinin of the influenza virus with a trimerizing domain of the fibritin of the bacteriophage T4 – was established.
Keywords
About the Authors
V. R. LitvinovaRussian Federation
Victoria R. Litvinova
630559; Novosibirsk Region; Koltsovo
N. B. Rudometova
Russian Federation
Nadezhda B. Rudometova, сandidate of biological sciences
630559; Novosibirsk Region; Koltsovo
L. A. Kisakova
Russian Federation
Lyubov A. Kisakova
630559; Novosibirsk Region; Koltsovo
D. N. Kisakov
Russian Federation
Denis N. Kisakov
630559; Novosibirsk Region; Koltsovo
V. A. Yakovlev
Russian Federation
Vladimir A. Yakovlev
630559; Novosibirsk Region; Koltsovo
E. V. Tigeeva
Russian Federation
Elena V. Tigeeva
630559; Novosibirsk Region; Koltsovo
M. B. Borgoyakova
Russian Federation
Mariya B. Borgoyakova, сandidate of biological sciences
630559; Novosibirsk Region; Koltsovo
K. I. Ivanova
Russian Federation
Ksenia I. Ivanova
630559; Novosibirsk Region; Koltsovo
V. Yu. Marchenko
Russian Federation
Vasiliy Yu. Marchenko, doctor of biological sciences
630559; Novosibirsk Region; Koltsovo
T. N. Ilyicheva
Russian Federation
Tatyana N. Ilyicheva, doctor of biological sciences
630559; Novosibirsk Region; Koltsovo
L. I. Karpenko
Russian Federation
Larisa I. Karpenko, doctor of biological sciences
630559; Novosibirsk Region; Koltsovo
A. P. Rudometov
Russian Federation
Andrey P. Rudometov, сandidate of biological sciences
630559; Novosibirsk Region; Koltsovo
A. A. Ilyichev
Russian Federation
Alexandr A. Ilyichev, doctor of biological sciences, professor
630559; Novosibirsk Region; Koltsovo
References
1. Gao F., Liu X., Dang Y., Duan P., Xu W., Zhang X., Wang S., Luo J., Li X. AddaVax-adjuvanted H5N8 inactivated vaccine induces robust humoral immune response against different clades of H5 viruses. Vaccines (Basel). 2022;10(10):1683. doi: 10.3390/vaccines10101683
2. WHO. Avian influenza weekly update number 977. Human infection with avian influenza A(H5) viruses. Available at: https://cdn.who.int/media/docs/default-source/wpro---documents/emergency/surveil-lance/avian-influenza/ai_20241213.pdf
3. WHO. Assessment of risk associated with recent influenza A(H5N1) clade 2.3.4.4b viruses 21 December 2022. Available at: https://cdn.who.int/media/docs/default-source/influenza/avian-and-other-zoonotic-in-fluenza/h5-risk-assessment-dec-2022.pdf?sfvrsn=a496333a_1&download=true
4. Eisfeld A.J., Biswas A., Guan L., Gu C., Maemura T., Trifkovic S., Wang T., Babujee L., Dahn R., Halfmann P.J., … Kawaoka Y.. Pathogenicity and transmissibility of bovine H5N1 influenza virus. Nature. 2024;633(8029):426–432. doi: 10.1038/s41586-024-07766-6
5. Zhirnov O.P., Lvov D.K. Avian flu: «For whom the bell tolls»? Voprosy virusologii = Problems of Virology. 2024;69(2):101–118. [In Russian]. doi: 10.36233/10.36233/0507-4088-213
6. Xiong X., Xiao H., Martin S.R., Coombs P.J., Liu J., Collins P.J., Vachieri S.G., Walker P.A., Lin Y.P., McCauley J.W., Gamblin S.J., Skehel J.J. Enhanced human receptor binding by H5 haemagglutinins. Virology. 2014;456-457(100):179–187. doi: 10.1016/j.virol.2014.03.008
7. Kok A., Fouchier R.A.M., Richard M. Cross-reactivity conferred by homologous and heterologous prime-boost A/H5 influenza vaccination strategies in humans : a literature review. Vaccines. 2021;9(12):1465. doi: 10.3390/vaccines9121465
8. Furuyama W., Reynolds P., Haddock E., Meade-White K., Quynh Le M., Kawaoka Y., Feldmann H., Marzi A. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines. 2020;5(1):4. doi: 10.1038/s41541-019-0155-z
9. Litvinova V.R., Rudometov A.P., Karpenko L.I., Ilyichev A.A. mRNA vaccine platform: mRNA production and delivery. Russ. J. Bioorg. Chem. 2023;49(2): 220–235. doi: 10.1134/S1068162023020152
10. Ledesma-Feliciano C., Chapman R., Hooper J.W., Elma K., Zehrung D., Brennan M.B., Spiegel E.K. Improved DNA vaccine delivery with needle-free injection systems. Vaccines. 2023;11(2):280. doi: 10.3390/vaccines11020280
11. Bazhan S., Antonets D., Starostina E., Ilyicheva T., Kaplina O., Marchenko V., Durymanov A., Oreshkova S., Karpenko L. Immunogenicity and protective efficacy of influenza a dna vaccines encoding artificial antigens based on conservative hemagglutinin stem region and M2 protein in mice. Vaccines (Basel). 2020;8(3):448. doi: 10.3390/vaccines8030448
12. Fukuyama H., Shinnakasu R., Kurosaki T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol. Rev. 2020;296(1):132–141. doi: 10.1111/imr.12887
13. Cui X., Vervaeke P., Gao Y., Opsomer L., Sun Q., Snoeck J., Devriendt B., Zhong Z., Sanders N.N. Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza. NPJ Vaccines. 2024;9(1):138. doi: 10.1038/s41541-024-00932-x
14. Borgoyakova M.B., Karpenko L.I., Rudometov A.P., Volosnikova E.A., Merkuleva I.A., Starostina E.V., Zadorozhny A.M., Isaeva A.A., Nesmeyanova V.S., Shanshin D.V., … Ilyichev A.A. Self-assembled particles combining SARS-CoV-2 RBD protein and RBD DNA vaccine induce synergistic enhancement of the humoral response in mice. Int. J. Mol. Sci. 2022;23(4):2188. doi: 10.3390/ijms23042188
15. Rudometova N.B., Fando A.A., Kisakova L.A., Kisakov D.N., Borgoyakova M.B., Litvinova V.R., Yakovlev V.A., Tigeeva E.V., Vahitov D.I., Sharabrin S.V., … Karpenko L.I. Immunogenic and protective properties of recombinant hemagglutinin of influenza A (H5N8) virus. Vaccines. 2024;12(2):143. doi: 10.3390/vaccines12020143
16. Milder F.J., Jongeneelen M., Ritschel T., Bouchier P., Bisschop I.J.M., de Man M., Veldman D., Le L., Kaufmann B., Bakkers M.J.G., … Langedijk J.P.M. Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc. Natl. Acad. Sci. USA. 2022;119(6):e2115379119. doi: 10.1073/pnas.2115379119
17. Catani J.P.P., Job E.R., Ysenbaert T., Smet A., Ray S., LaRue L., Stegalkina S., Barro M., Vogel T.U., Saelens X. Pre-existing antibodies directed against a tetramerizing domain enhance the immune response against artificially stabilized soluble tetrameric influenza neuraminidase. NPJ Vaccines. 2022;7(1):11. doi: 10.1038/s41541-022-00435-7
18. Litvinova V.R., Rudometov A.P., Rudometova N.B., Kisakov D.N., Borgoyakova M.B., Kisakova L.A., Starostina E.V., Fando A.A., Yakovlev V.A., Tigeeva E.V., … Karpenko L.I. DNA vaccine encoding a modified hemagglutinin trimer of avian influenza a virus H5N8 protects mice from viral challenge. Vaccines (Basel). 2024;12(5):538. doi: 10.3390/vaccines12050538
19. Nguyen T.Q., Rollon R., Choi Y.K. Animal models for influenza research: strengths and weaknesses. Viruses. 202;13(6):1011. doi: 10.3390/v13061011
20. Iwatsuki-Horimoto K., Nakajima N., Ichiko Y., Sakai-Tagawa Y., Noda T., Hasegawa H., Kawaoka Y. Syrian hamster as an animal model for the study of human influenza virus infection. J. Virol. 2018;92(4):e01693–17. doi: 10.1128/JVI.01693-17
21. Hoxie I., Vasilev K., Clark J.J., Bushfield K., Francis B., Loganathan M., Campbell J.D., Yu D., Guan L., Gu C. … Krammer F. A recombinant N2 neuraminidase-based CpG 1018® adjuvanted vaccine provides protection against challenge with heterologous influenza viruses in mice and hamsters. Vaccine. 2024;42(24):126269. doi: 10.1016/j.vaccine.2024.126269
22. de Jong N.M.C., Aartse A., van Gils M.J., Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert. Rev. Vaccines. 2020;19(6):563–577. doi: 10.1080/14760584.2020.1777861
Review
For citations:
Litvinova V.R., Rudometova N.B., Kisakova L.A., Kisakov D.N., Yakovlev V.A., Tigeeva E.V., Borgoyakova M.B., Ivanova K.I., Marchenko V.Yu., Ilyicheva T.N., Karpenko L.I., Rudometov A.P., Ilyichev A.A. Immunogenicity of experimental DNA vaccines encoding hemagglutinin and hemagglutinin stalk of influenza A (H5N8) virus. Сибирский научный медицинский журнал. 2025;45(1):100-108. (In Russ.) https://doi.org/10.18699/SSMJ20250111