Antiviral properties of composition drugs based on double-stranded RNA and human interferon alpha-2b
https://doi.org/10.18699/SSMJ20250107
Abstract
The aim of this work was to obtain and study antiviral properties of a drug for intranasal use containing yeast double-stranded RNA (dsRNA) and recombinant human interferon alpha-2b (IFN-α2b) incorporated into a delivery system (molecular construct).
Material and methods. Molecular constructs carrying IFN-α2b and dsRNA were obtained by our original method. For present study, the samples of intranasal dosage forms of three formulations were chosen: 50 µg of dsRNA and 10, 50 or 100 IU of IFN-α2b per one dose. The in vitro antiviral activity of the composition preparations was determined by inhibition of cytopathic effect (CPE) of murine encephalomyocarditis virus (EMCV), Columbia strain, in mouse L929 and L-68 cell cultures. The in vivo protective properties of the preparations were studied in white outbred ICR male mice intranasally infected with 10 lethal dose, 50 %, of influenza virus strain A/Aichi/2/68 (H3N2). The protection coefficient was calculated by average life expectancy and death of animals.
Results and discussion. All the composition preparations used in this study demonstrated the ability to inhibit the destructive effect of the test virus and increase the number of viable cells in L929 and L-68 cultures. The enhancement of the protective effect was observed with increasing IFN-α2b content in the drug formulation. The greatest antiviral activity was shown for the preparation containing 50 µg of dsRNA and 100 IU of IFN-α2b per dose. A composition preparation of the same formulation, administered intranasally three times at a dose of (2.5 mg dsRNA and 5000 IU IFN-α2b)/kg according to the therapeutic and prophylactic regimen, protected 50 % of animals from death, which was not observed in a group administered with dsRNA alone. IFN-α2b used at a dose equivalent to its content in the composition preparation had a similar but less pronounced effect.
Conclusions. The results of the in vitro and in vivo experiments have confirmed the fact that combining interferon and its inducer enhances the antiviral effect of the composition drug compared to that of its components used separately. The data obtained testify to the prospects for the development of intranasal forms of antiviral drugs using a combination of interferon and dsRNA incorporated in a delivery system.
Keywords
About the Authors
S. G. GamaleyRussian Federation
Svetlana G. Gamaley
630559; Novosibirsk region; Koltsovo
M. О. Skarnovich
Russian Federation
Maxim O. Skarnovich
630559; Novosibirsk region; Koltsovo
О. Yu. Мazurkov
Russian Federation
Oleg Yu. Мazurkov, candidate of biological sciences
630559; Novosibirsk region; Koltsovo
L. N. Shishkina
Russian Federation
Larisa N. Shishkina, doctor of medical sciences
630559; Novosibirsk region; Koltsovo
E. S. Bashkina
Russian Federation
Elena S. Bashkina
630559; Novosibirsk region; Koltsovo
S. V. Usova
Russian Federation
Svetlana V. Usova, candidate of medical sciences
630559; Novosibirsk region; Koltsovo
O. S. Ivanova
Russian Federation
Olga S. Ivanova, candidate of biological sciences
630559; Novosibirsk region; Koltsovo
G. M. Levagina
Russian Federation
Galina M. Levagina, candidate of biological sciences
630559; Novosibirsk region; Koltsovo
E. D. Danilenko
Russian Federation
Elena D. Danilenko, candidate of biological sciences
630559; Novosibirsk region; Koltsovo
References
1. Zarubaev V.V., Garshinina A.V., Slita A.V., Belyavskaya S.V., Lavrentieva I.N. Antiviral activity of Kagocel® on the model of experimental lethal influenza infection. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2020;65(1-2):15–20. [In Russian]. doi: 10.37489/0235-2990-2020-65-1-2-15-20
2. Khanna M., Kumar P., Choudhary K., Kumar B., Vijayan V.K. Emerging influenza virus: a global threat. J. Biosci. 2008;33(4):475–482. doi: 10.1007/s12038-008-0066-z
3. Omel’chenko N.D., Ivanova I.A., Bespalova I.A., Filippenko A.V. Immunomodulators and specific prophylaxis of infectious diseases. Problemy osobo opasnykh infektsiy = Problems of Particularly Dangerous Infections. 2017;(3):21–26. [In Russian]. doi: 10.21055/0370-1069-2017-3-21-26
4. Kossyvakis A., Mentis A.A., Tryfinopoulou K., Pogka V., Kalliaropoulos A., Antalis E., Lytras T., Meijer A., Tsiodras S., Karaktisos P., Mentis A.F. Antiviral susceptibility profile of influenza A viruses: keep an eye on immunocompromised patients under prolonged treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2017;36(2):361–371. doi: 10.1007/s10096-016-2809-3
5. Danilenko E.D., Belkina A.O., Sysoeva G.M. Development of drugs based on high-polymeric double-stranded RNA for antiviral and antitumor therapy. Biochemistry (Moscow), Suppl. Ser. B. 2019;13(4):308–323. doi: 10.1134/S1990750819040036
6. Semple S.L., Au S.K.W., Jacob R.A., Mossman K.L., DeWitte-Orr S.J. Discovery and use of long dsRNA mediated RNA interference to stimulate antiviral protection in interferon competent mammalian cells. Front. Immunol. 2022;(13):859749. doi: 10.3389/fimmu.2022.859749
7. Ershov F.I., Narovlyansky A.N. Usage of interferon inducers during viral infections. Voprosy virusologii = Problems of Virology. 2015;60(2):5–10. [In Russian].
8. Poloskov V.V., Ershov F.I. Activation of synthesis of endogenous interferon (Review). Razrabotka i registratsiya lekarstvennykh sredstv = Drug Development and Registration. 2017;(1):188–192. [In Russian].
9. Wong J.P., Nagata L.P., Christopher M.E., Salazar A.M., Dale R.M. Prophylaxis of acute respiratory virus infections using nucleic acid-based drugs. Vaccine. 2005;23(17-18):2266–2268. doi: 10.1016/j.vaccine.2005.01.037
10. de Clercq E. Interferon and its inducers – a never-ending story: “old” and “new” data in a new perspective. J. Infect. Dis. 2006;194(Suppl 1);19–26. doi: 10.1086/505351
11. Pierson T.C., Diamond М.S. The continued emerging threat of flaviviruses. Nat. Microbiol. 2020;5(6):796–812. doi: 10.1038/s41564-020-0714-0
12. Myasnikov A.L., Berns S.A., Talyzin P.A., Ershov F.I. Interferon gamma in the treatment of patients with moderate COVID-19. Voprosy virusologii = Problems of Virology. 2021;66(1):47–54. [In Russian]. doi: 10.36233/0507-4088-24
13. Pantelic L., Sivakumaran H., Urosevic N. Differential induction of antiviral effects against West Nile virus in primary mouse macrophages derived from flavivirus-susceptible and congenic resistant mice by alpha/beta interferon and poly(I-C). J. Virol. 2005;79(3):1753–1764. doi: 10.1128/JVI.79.3.1753-1764.2005
14. Morrey J.D., Day C.W., Julander J.G., Blatt L.M., Smee D.F., Sidwell R.W. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir. Chem. Chemother. 2004;15(2):101–109. doi: 10.1177/095632020401500202
15. Farma J.M., Puhlmann M., Soriano P.A., Cox D., Paciotti G.F., Tamarkin L., Alexander H.R. Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor. Int. J. Cancer. 2007;120(11):2474–2480. doi: 10.1002/ijc.22270
16. Messerschmidt S.K., Musyanovych A., Altvater M., Scheurich P., Pfizenmaier K., Landfester K., Kontermann R.E. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J. Control. Release. 2009;137(1):69–77. doi: 10.1016/j.jconrel.2009.03.010
17. Johnson M.B., Chandler M., Afonin K.A. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv. Drug Deliv. Rev. 2021;(173):427–438. doi: 10.1016/j.addr.2021.04.011
18. Masycheva V.I., Lebedev L.R., Danilenko E.D., Sysoeva G.M., Gamaley S.G. Anticancer drug based on nanoparticles bearing recombinant human tumour necrosis factor alpha. Patent 2386447 RF; published 20. 04. 2010. [In Russian].
19. OFS.1.7.2.0002.15. Cell-Culture Bioassays for Interferon Products. State Pharmacopoeia of the Russian Federation, XIV edition, 2018, 2, 2740–2749. Available at: https://pharmacopoeia.ru/ofs-1-7-2-0002-15-biologicheskie-metody-ispytaniya-preparatov-interferona-s-ispolzovaniem-kultur-kletok/ [In Russian].
20. Gamaley S.G., Skarnovich M.O., Makarevich E.V., Mazurkov O.Yu., Shishkina L.N., Ivanova O.S., Levagina G.M., Danilenko E.D. Antiviral activity of double-stranded ribonucleic acid and interferon alpha composition in the model of experimental influenza infection of mice. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy. 2023;68(7–8):27–33. [In Russian]. doi: 10.10.37489/0235-2990-2023-68-7-8-27-33
21. Ivanova O.S., Levagina G.M., Bashkina E.S., Usova S.V., Telegina Yu.V., Gamaley S.G., Lomzov A.A., Danilenko E.D. Drugs for intranasal use based on interferons and their inductor: obtaining and investigation of properties. Biofarmatsevticheskiy zhurnal = Russian Journal of Biopharmaceuticals. 2023;15(4):32–44. [In Russian]. doi: 10.30906/2073-8099-2023-15-4-14-20
22. Silverman R.H. Viral encounters with 2’,5’-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 2007;81(23):12720–12729. doi: 10.1128/JVI.01471-07
23. García M.A., Gil J., Ventoso I., Guerra S., Domingo E., Rivas C., Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol. Mol. Biol. Rev. 2006;70(4):1032–1060. doi: 10.1128/MMBR.00027-06
24. Zhang P., Samuel C.E. Protein kinase PKR Plays a stimulus- and virus-dependent role in apoptotic death and virus multiplication in human cells. J. Virol. 2007;81(15):8192–8200. doi: 10.1128/JVI.00426-07
25. Cole J.L. Activation of PKR: An open and shut case? Trends Biochem. Sci. 2007;32(2):57–62. doi: 10.1016/j.tibs.2006.12.003
26. Calderon B.M., Conn G.L. A human cellular noncoding RNA activates the antiviral protein 2’-5’-oligoadenylate synthetase 1. J. Biol. Chem. 2018;293(41):16115–16124. doi: 10.1074/jbc.RA118.004747