Molecular docking in the study of the interaction between cholera toxin subunit B and lipid raft components
https://doi.org/10.18699/SSMJ20250106
Abstract
The aim of this study was to predict, using molecular docking, the formation of complexes between cholera toxin subunit B (CTB) and lipid raft components – gangliosides GM1 and GM3, lactosylceramide (LacCer), and cholesterol.
Material and methods. The study involved modeling the three-dimensional structure of the lipid raft–CTB complex to obtain information on ligand coordinates and binding energy, analysis of the amino acid sequences of the CTB D-chain, and molecular docking.
Results. Three-dimensional structures of the complexes were obtained using molecular docking. The topology of ligands GM1, GM3, and cholesterol in the molecular pocket of the CTB D-chain was proposed. It was shown that the conformations of CTB with GM1, GM3, and cholesterol ligands exhibited negative binding energy, indicating the potential formation of stable complexes. LacCer was an exception, as its chemical characteristics, associated with the formation of unstable conformers, rendered it unsuitable for docking analysis.
Conclusions. The proposed algorithms lay a scientific foundation for solving important applied problems in bioinformatics and pharmacology, specifically in the study of the pathogenesis and treatment of diseases related to lipid raft dysfunction.
About the Authors
I. A. AndrievskayaRussian Federation
Irina A. Andrievskaya, doctor of biological sciences, professor of the RAS
675004; Kalinina st., 22; Blagoveshchensk
P. D. Timkin
Russian Federation
Pavel D. Timkin
675028; Ignatievskoye highw., 19; Blagoveshchensk
E. M. Ustinov
Russian Federation
Egor M. Ustinov
675004; Kalinina st., 22; Blagoveshchensk
References
1. Levental I., Levental K.R., Heberle F.A. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 2020;30(5):341–353. doi: 10.1016/j.tcb.2020.01.009
2. Stratmann T. Cholera toxin subunit B as adjuvant – an accelerator in protective immunity and a break in autoimmunity. Vaccines (Basel). 2015;3(3):579–596. doi: 10.3390/vaccines3030579
3. Klotzsch E., Schutz G.J. A critical survey of methods to detect plasma membrane rafts. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013;368(1611):20120033. doi: 10.1098/rstb.2012.0033
4. Day C.A., Kenworthy A.K. Mechanisms underlying the confined diffusion of cholera toxin B-subunit in intact cell membranes. PLoS One. 2012;7(4):e34923. doi: 10.1371/journal.pone.0034923
5. Kenworthy A.K., Petranova N., Edidin M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 2000;11(5):1645–1655. doi: 10.1091/mbc.11.5.1645
6. Fujinaga Y., Wolf A.A., Rodighiero C., Wheeler H., Tsai B., Allen L., Jobling M.G., Rapoport T., Holmes R.K., Lencer W.I. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum. Mol. Biol. Cell. 2003;14(12):4783–4793. doi: 10.1091/mbc.e03-06-0354
7. Kenworthy A.K., Schmieder S.S., Raghunathan K., Tiwari A., Wang T., Kelly C.V., Lencer W.I. Cholera Toxin as a probe for membrane biology. Toxins (Basel). 2021;13(8):543. doi: 10.3390/toxins13080543
8. Day C.A., Kenworthy A.K. Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem. 2015;57:135–145. doi: 10.1042/bse0570135
9. Merritt E.A., Sarfaty S., Chang T.T., Palmer L.M., Jobling M.G., Holmes R.K., Hol W.G. Surprising leads for a cholera toxin receptor-binding antagonist: crystallographic studies of CTB mutants. Structure. 1995;3(6):561–570. doi: 10.1016/s0969-2126(01)00190-3
10. Brooks B.R., Brooks C.L.III, MacKerell A.D. Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., … Karplus M. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009;30(10):1545–1614. doi: 10.1002/jcc.21287
11. Schrödinger L., DeLano W. PyMOL. Available at: http://www.pymol.org/pymol
12. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes; 2016. Available at: https://www.3ds.com/products/biovia/discovery-studio
13. PubChem. Cholera Toxin B-subunit. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/16760533#section=Structures
14. Krivák R., Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminform. 2018;10(1):39. doi: 10.1186/s13321-018-0285-8
15. Sweeney A., Mulvaney T., Maiorca M., Topf M. ChemEM: Flexible docking of small molecules in Cryo-EM structures. J. Med. Chem. 2024;67(1):199–212. doi: 10.1021/acs.jmedchem.3c01134
16. Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000;1(1):31–39. doi: 10.1038/35036052
17. Agu P.C., Afiukwa C.A., Orji O.U., Ezeh E.M., Ofoke I.H., Ogbu C.O., Ugwuja E.I., Aja P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023;13(1):13398. doi: 10.1038/s41598-023-40160-2
18. Varshney P., Yadav V., Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149(1):13–24. doi: 10.1111/imm.12617