Preview

Сибирский научный медицинский журнал

Advanced search

Вenzimidazole derivatives with anticonvulsant activity and their pharmacological targets

https://doi.org/10.18699/SSMJ20250102

Abstract

   Key biomolecular targets involved in regulating neuronal excitability are discussed, and recent findings on benzimidazole derivatives exhibiting anticonvulsant activity are presented. The relationship between their structure and anticonvulsant activity is closely analyzed. The literature review revealed that benzimidazoles possess diverse biological activities and significant potential for modulating ion channels, receptors, and other targets implicated in epileptogenesis, making them a promising scaffold for the development of novel antiepileptic drugs; can enhance GABAergic neurotransmission,
showing strong anticonvulsant properties in various experimental models of epilepsy; antagonize NMDA receptors, which helps reduce neuronal hyperexcitability and provides neuroprotective effects; modulate T-type calcium channels and TRPM7 channels, which are important targets for treating absence epilepsy and preventing relapses of status epilepticus. Selective kappa opioid receptor agonists also demonstrate anticonvulsant effects and the ability to block excitotoxicity. Ligands that act on peroxisome proliferator-activated receptors gamma, KV7 channels, and purine P2X3 receptors are also considered. Continued research in this field may lead to the discovery of effective and well-tolerated medications for managing epilepsy.

About the Authors

A. D. Matveev
Volgograd State Medical University of Minzdrav of Russia
Russian Federation

Alexandr D. Matveev

400131; Pavshikh Bortsov sq., 1; Volgograd



A. M. Shirshina
Volgograd State Medical University of Minzdrav of Russia
Russian Federation

Anastasiya M. Shirshina

400131; Pavshikh Bortsov sq., 1; Volgograd



G. V. Pridvorov
Volgograd State Medical University of Minzdrav of Russia; Volgograd Medical Research Center
Russian Federation

Gleb V. Pridvorov

400131; Pavshikh Bortsov sq., 1; Volgograd



O. Yu. Mukha
VolgogScientific Center for Innovative Drugs of Volgograd State Medical University of Minzdrav of Russiarad State Medical University of Minzdrav of Russia
Russian Federation

Olga Yu. Mukha

400131; Pavshikh Bortsov sq., 1; 400087; Novorossiyskaya st., 39; Volgograd



References

1. Azizova R.B., Abdullaeva N.N., Usmonaliev I.I. Changes in higher cognitive functions in patients with epilepsy. Voprosy nauki i obrazovaniya = Science and Education Issues. 2019;28(77):87–96. [In Russian].

2. Epilepsy: a public health imperative. Geneva: World Health Organization. 2019. Available at: https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative.

3. Clinical guidelines. Epilepsy and status epilepticus in adults and children. 2022. Available at: https://cr.minzdrav.gov.ru/recomend/741_1. [In Russian].

4. Nasyrova R.F., Sivakova N.A., Lipatova L.V., Ivashchenko D.V., Sosina K.A., Drokov A.P., Shnaider N.A. Biological markers of the antiepileptic drugs efficacy and safety: pharmacogenetics and pharmacokinetics. Sibirskoe meditsinskoe obozrenie = Siberian Medical Review. 2017;(1):17–25. [In Russian]. doi: 10.20333/2500136-2017-1-17-25

5. Petrukhin A.S., Voronkova K.V., Pylaeva O.A., Kholin A.A., Akhmedov T.M. Principals of rational therapy for epilepsy. Lechebnoye delo = Medical Care. 2010;(2):10–17. [In Russian].

6. Hamer H.M., Holtkamp M., Kaiser T., Fey S., Rozinat K., Mayer T., Schulze-Bonhage A. Position paper of a German interdisciplinary round table on future designs of trials on adjunctive treatment with antiseizure drugs. Seizure. 2020;78:53–56. doi: 10.1016/j.seizure.2020.03.004

7. Jardosh H.H., Sangani C.B., Patel M.P., Patel R.G. One step synthesis of pyrido [1, 2-a] benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation. Chin. Chem. Lett. 2013;24(2):123–126. doi: 10.1016/j.cclet.2013.01.021

8. Spasov A.A., Smirnova L.A., Grechko O.Yu., Eliseeva N.V., Lifanova Yu.V., Rashchenko A.V., Zhukovskaya O.N., Morkovnik A.S., Anisimova V.A. Pharmacokinetic properties of a new kappa-opioid analgesic RU-1205 compound at a single peroral administration. Farmatsiya i farmakologiya = Pharmacy and Pharmacology. 2021;9(2):149–160. [In Russian].

9. Horton J. Albendazole for the treatment of echinococcosis. Fundam. Clin. Pharmacol. 2003;17(2):205–212. doi: 10.1046/j.1472-8206.2003.00171.x

10. Maltsev D.V., Spasov A.A., Miroshnikov M.V., Skripka M.O., Divaeva L.N. Influence of Diazepino [1, 2-a] benzimidazole derivative (DAB-19) on behavioral aspects of animals. Research Results in Pharmacology. 2020;6(3):9–14. doi: 10.3897/rrpharmacology.6.55142

11. Mathew B., Suresh J., Anbazhagan S., Devaraji V. Hypnotic profile of imines from benzimidazole chalcones: mechanism of synthesis, DFT studies and in silico screening. Cent. Nerv. Syst. Agents Med. Chem. 2013;13(3):207–216. doi: 10.2174/1871524914666140406135930

12. Monga J., Ghosh N.S., Rani I., Singh R., Deswal G., Dhingra A.K., Grewal A.S. Unlocking the pharmacological potential of benzimidazole derivatives: a pathway to drug development. Curr. Top. Med. Chem. 2024;24(5):437–485. doi: 10.2174/0115680266283641240109080047

13. Bhrigu B., Siddiqui N., Pathak D., Alam M.S., Ali R., Azad B. Anticonvulsant evaluation of some newer benzimidazole derivatives: design and synthesis. Acta Pol. Pharm. 2012;69(1):53–62.

14. Bouayyadi A., Aliani A.E., Kasmi Y., Moussaif A., Abbadi N.E., Mesfioui A., Essassi E.M., Mzibri M.E. Molecular docking analysis of α2-containing GABAA receptors with benzimidazoles derivatives. Bioinformation. 2020;16(8):611. doi: 10.6026/97320630016611

15. Korpi E.R., Gründer G., Lüddens H. Drug interactions at GABAA receptors. Prog. Neurobiol. 2002;67(2):113–159.

16. Jain P., Sharma P.K., Rajak H., Pawar R.S., Patil U.K., Singour P.K. Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Arch. Pharm. Res. 2010;33(7):971–980. doi: 10.1007/s12272-010-0701-8

17. Partap S., Yar M.S., Hassan M.Z., Akhtar M.J., Siddiqui A.A. Design, synthesis, and pharmacological screening of pyridazinone hybrids as anticonvulsant agents Arch. Pharm. (Weinheim). 2017;350(10):1700135.

18. Raghu M.S., Swarup H.A., Prathibha B.S., Yogesh Kumar K., Pradeep Kumar C.B., Alharti F.A., Prashanth M.K., Jeon B.H. Design, synthesis and molecular docking studies of 5, 6-difluoro-1H-benzo [d] imidazole derivatives as effective binders to GABAA receptor with potent anticonvulsant activity. Journal of Molecular Structure. 2023;1285:135502. doi: 10.1016/j.molstruc.2023.135502

19. Sonakshi Tyagi S., Mazumder A., Kumar R., Datt V., Shabana K., Sharma A.S., Ahsan M.J., Yar M.S. Synthesis, characterization, in silico and in vivo evaluation of amino acid derived schiff bases of quinoline-benzimidazole hybrids as anti-epileptic agents. Ind. J. Pharm. Edu. Res. 2024;58(1s):80–92. doi:10.5530/ijper.58.1s.8

20. Salpietro V., Dixon C.L., Guo H., Bello O.D., Vandrovcova J., Efthymiou S., Maroofian R., Heimer G., Burglen L., Valence S., … Houlden H. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 2019;10(1):3094. doi: 10.1038/s41467-019-10910-w

21. Quan J., Yang H., Qin F., He Y., Liu J., Zhao Y., Ma C., Cheng M. Discovery of novel tryptamine derivatives as GluN2B subunit-containing NMDA receptor antagonists via pharmacophore-merging strategy with orally available therapeutic effect of cerebral ischemia. Eur. J. Med. Chem. 2023;253:115318. doi: 10.1016/j.ejmech.2023.115318

22. Gulcan H.O., Mavideniz A., Sahin M.F., Orhan I E. Benzimidazole-derived compounds designed for different targets of Alzheimer’s disease. Curr. Med. Chem. 2019;26(18):3260–3278. doi: 10.2174/0929867326666190124123208

23. Chen S., Xu D., Fan L., Fang Z., Wang X., Li M. Roles of N-Methyl-D-aspartate receptors (NMDARs) in epilepsy. Front. Mol. Neurosci. 2022;14:797253. doi: 10.3389/fnmol.2021.797253

24. Baudy R.B., Yardley J.P., Zaleska M.M., Bramlett D.R., Tasse R.P., Kowal D.M., Katz A.H., Moyer J.A., Abou-Gharbia M. Design, synthesis, SAR, and biological evaluation of highly potent benzimidazole-spaced phosphono-α-amino acid competitive NMDA antagonists of the AP-6 type. J. Med. Chem. 2001;44(10):1516–1529. doi: 10.1021/jm000385w

25. Sweatt A.J., Garcia-Espinosa M.A., Wallin R., Hutson S.M. Branched-chain amino acids and neurotransmitter metabolism: Expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J. Comp. Neurol. 2004;477(4):360–370. doi: 10.1002/cne.20200

26. Hu L.Y., Boxer P.A., Kesten S.R., Lei H.J., Wustrow D.J., Moreland D.W., Zhang L., Ahn K., Ryder T.R., Liu X., … Ohren J. The design and synthesis of human branched-chain amino acid aminotransferase inhibitors for treatment of neurodegenerative diseases. Bioorg. Med. Chem. Lett. 2006;16(9):2337–2340. doi: 10.1016/j.bmcl.2005.07.058

27. Siddiqui N., Alam M.S., Ali R., Yar M.S., Alam O. Synthesis of new benzimidazole and phenyl-hydrazinecarbothiomide hybrids and their anticonvulsant activity. Med. Chem. Res. 2016;25(7):1390–1402. doi: 10.1007/s00044-016-1570-6

28. Goto M., Miyahara I., Hirotsu K., Conway M., Yennawar N., Islam M.M., Hutson S.M. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J. Biol. Chem. 2005;280(44):37246–37256. doi: 10.1074/jbc.M506486200

29. Agostinho A.S., Mietzsch M., Zangrandi L., Kmiec I., Mutti A., Kraus L., Fidzinski P., Schneider U.C., Holtkamp M., Heilbronn R., Schwarzer C. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol. Med. 2019;11(10):e9963. doi: 10.15252/emmm.201809963

30. Tortella F.C., Long J.B. Characterization of opioid peptide-like anticonvulsant activity in rat cerebrospinal fluid. Brain Res. 1988;456(1):139–146. doi: 10.1016/0006-8993(88)90355-1

31. Dai H., Wang P., Mao H., Mao X., Tan S., Chen Z. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway. Cell. Cycle. 2019;18(2):226–237. doi: 10.1080/15384101.2018.1562286

32. Tong G., Zhang B., Zhou X., Zhao J., Sun Z., Tao Y., Pei J., Zhang W. Kappa-opioid agonist U50, 488H-mediated protection against heart failure following myocardial ischemia/reperfusion: dual roles of heme oxygenase-1. Cell. Physiol. Biochem. 2016;39(6):2158–2172. doi: 10.1159/000447911

33. Singh N., Vijayanti S., Saha L., Bhatia A., Banerjee D., Chakrabart A. Neuroprotective effect of Nrf2 activator dimethyl fumarate, on the hippocampal neurons in chemical kindling model in rat. Epilepsy Res. 2018;143:98–104. doi: 10.1016/j.eplepsyres.2018.02.011

34. Shi Y., Mia W., Teng J., Zhang L. Ginsenoside Rb1 protects the brain from damage induced by epileptic seizure via Nrf2/ARE signaling. Cell. Physiol. Biochem. 2018;45(1):212–225. doi: 10.1159/000486768

35. Guo X.Q., Cao Y.L., Hao F., Yan Z.R., Wang M.L., Liu X.W. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway. Adv. Med. Sci. 2017;62(2):246–253. doi: 10.1016/j.advms.2016.11.011

36. Wei H., Duan G., He J., Meng Q., Liu Y., Chen W., Meng Y. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK3β signaling pathway. Exp. Ther. Med. 2018;15(1):1136–1142. doi: 10.3892/etm.2017.5512

37. Wu Q., Yi X. Down-regulation of long non-coding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J. Mol. Neurosci. 2018;65(2):234–245. doi: 10.1007/s12031-018-1093-3

38. Vasil’ev P.M., Kalitin K.Y., Spasov A.A., Grechko O.Y., Poroikov V.V., Filimonov D.A., Anisimova V.A. Prediction and study of anticonvulsant properties of benzimidazole derivatives. Pharmac. Chem. J. 2017;50:775–780. doi: 10.1007/s11094-017-1530-6

39. Vasil’ev P.M., Kalitin K.Yu., Spasov A.A., Grechko O.Yu., Poroikov V.V., Filimonov D.A., Anisimova V.A. Prediction and study of anticonvulsant properties of benzimidazole derivatives. Khimiko-farmatsevticheskiy zhurnal = Pharmaceutical Chemistry Journal. 2016;50(12):3–8. [In Russian]. doi: 10.30906/0023-1134-2016-50-12-3-8

40. Grechko O.Yu., Spasov A.A., Kalitin K.Yu., Zhukovskaya O.N., Anisimova V.A. Comparative study of the influence of benzimidazole derivative RU-1205, diazepam, and sodium valproate on the seizure threshold, anticonvulsant tolerance, and rebound effects. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2016;79(12):3–6. [In Russian]. doi: 10.30906/0869-2092-2016-79-12-3-6

41. Spasov A.A., Grechko O.Yu., Kalitin K.Yu., Anisimova V.A. Receptor-dependent mechanisms of anticonvulsant activity of benzimidazole derivative RU-1205 compared to diazepam and U-50,488 H. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2018;81(2):3–6. [In Russian]. doi: 10.30906/0869-2092-2018-81-2-3-6

42. Kalitin K.Yu., Grechko O.Yu., Spasov A.A., Anisimova V.A. Anticonvulsant effect of novel benzimidazole derivative (RU-1205) in chronic intermittent ethanol vapor exposure model in mice. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2015;78(4):3–5. [In Russian]. doi: 10.30906/0869-2092-2015-78-4-3-5

43. Spasov A.A., Kalitin K.Yu., Grechko O.Yu., Anisimova V.A. Antiepileptic activity of a new derivative of benzimidazole RU-1205. Bull. Exp. Biol. Med. 2016;160(3):336–339. doi: 10.1007/s10517-016-3164-1

44. Kalitin K.Yu., Grechko O.Yu., Spasov A.A., Sukhov A.G., Anisimova V.A., Matukhno A.E. GABAergic mechanism of anticonvulsive effect of chemical agent RU-1205. Bull. Exp. Biol. Med. 2018;164(151):629–635. doi: 10.1007/s10517-018-4047-4

45. Kalitin K.Yu., Spasov A.A., Grechko O.Yu., Sukhov A.G., Vislobokov A.I., Anisimova V.A., Matukhno A.E. Anticonticonvulsant and membranotropic activity of RU-1205 compound. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2017;80(9):28–34. [In Russian]. doi: 10.30906/0869-2092-2017-80-9-28-34

46. Spasov A.A., Grechko O.Yu., Shtareva D.M., Rashchenko A.I., Kalitin K.Yu., Litvinov R.A. Study of the interaction of RU-1205 with neurotransmitter analyzers. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta = Journal of the Volgograd State Medical University. 2014;(2):120–122. [In Russian].

47. Semenova Yu.V., Eliseeva N.V., Mazanova L.S., Grechko O.Yu., Anisimova V.A., Spasov A.A. Acute toxicity of new kappa-opioid antagonist-compound RU-1205 administrated intragastrically. Volgogradskiy nauchno-meditsinskiy zhurnal = Volgograd Journal of Medical Research. 2019;(2):44–47. [In Russian].

48. Nelson M.T., Todorovic S.M., Perez-Reyes E. The role of T-type calcium channels in epilepsy and pain. Curr. Pharm. Des. 2006;12(18):2189–2197. doi: 10.2174/138161206777585184

49. Iftinca M., McKay B.E., Snutch T.P., McRory J.E., Turner R.W., Zamponi G.W. Temperature dependence of T-type calcium channel gating. Neuroscience. 2006;142(4):1031–1042. doi: 10.1016/j.neuroscience.2006.07.010

50. Yaari Y., Yue C., Su H. Recruitment of apical dendritic T-type Ca<sup>2+</sup> channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J. Physiol. 2007;580(Pt. 2):435–450. doi: 10.1113/jphysiol.2007.127670

51. David L.S., Garcia E., Cain S.M., Thau E., Tyson J.R., Snutch T.P. Splice-variant changes of the CaV3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin). 2010;4(5):375–389. doi: 10.4161/chan.4.5.12874

52. Casillas-Espinosa P.M., Shultz S.R., Braine E.L., Jones N.C., Snutch T.P., Powell K.L., O’Brien T.J. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog. Neurobiol. 2019;182:101677. doi: 10.1016/j.pneurobio.2019.101677

53. Lu Y., Li M., Lee G.Y., Zhao N., Chen Z., Edwards A., Zhang K. Seeking the exclusive binding region of phenylalkylamine derivatives on human T-type calcium channels via homology modeling and molecular dynamics simulation approach. Pharmacol. Res. Perspect. 2021;9(3):e00783. doi: 10.1002/prp2.783

54. Quesada A., Bui P.H., Homanics G.E., Hankinson O., Handforth A. Comparison of mibefradil and derivative NNC 55-0396 effects on behavior, cytochrome P450 activity, and tremor in mouse models of essential tremor. Eur. J. Pharmacol. 2011;659(1):30–36. doi: 10.1016/j.ejphar.2011.01.004

55. Weiss N., Zamponi G.W. T-type calcium channels: from molecule to therapeutic opportunities. Int. J. Biochem. Cell Biol. 2019;108:34–39. doi: 10.1016/j.biocel.2019.01.008

56. Funel J.-A., Brodbeck S., Guggisberg Y., Litjens R., Seidel T., Struijk M., Abele S. Diastereospecific enolate addition and atom-efficient benzimidazole synthesis for the production of L/T calcium channel blocker ACT-280778. Organic Process Research & Development. 2014;18(12):1674–1685. doi: 10.1021/op400269b

57. Chubanov V., Mederos y Schnitzler M., Wäring J., Plank A., Gudermann T. Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch. Pharmacol. 2005;371(4):334–341. doi: 10.1007/s00210-005-1056-4

58. Aarts M.M., Tymianski M. TRPMs and neuronal cell death. Pflugers Arch. 2005;451(1):243–249. doi: 10.1007/s00424-005-1439-x

59. Jeong J.H., Lee S.H., Kho A.R., Hong D.K., Kang D.H., Kang B.S., Park M.K., Choi B.Y., Choi H.C., Lim M.-S., Suh S.W. The transient receptor potential melastatin 7 (TRPM7) inhibitors suppress seizure-induced neuron death by inhibiting zinc neurotoxicity. Int. J. Mol. Sci. 2020;21(21):7897. doi: 10.3390/ijms21217897

60. Chubanov V., Mederos y Schnitzler M., Meißner M., Schäfer S., Abstiens K., Hofmann T., Gudermann T. Natural and synthetic modulators of SK (Kca2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Br. J. Pharmacol. 2012;166(4):1357–1376. doi: 10.1111/j.1476-5381.2012.01855.x

61. Zhang D., Thimmapaya R., Zhang X.F., Anderson D.J., Baranowski J.L., Scanio M., Perez-Medrano A., Peddi S., Wang Z., Patel J.R. … Surowy C.S. KCNQ2/3 openers show differential selectivity and site of action across multiple KCNQ channels. J. Neurosci. Methods. 2011;200(1):54–62. doi: 10.1016/j.jneumeth.2011.06.014

62. Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998;50(3):413–492.

63. da Silva Fernandes M.J., Naffah Mazzacoratti M.D.G., Cavalheiro E.A. Pathophysiological aspects of temporal lobe epilepsy and the role of P2X receptors. The Open Neuroscience Journal. 2010;4(1):35–43. doi: 10.2174/1874082001004010035

64. Xia J., Wang H., Zhang Q., Han Z. Modulation of P2X purinoceptor 3 (P2X3) in pentylenetetrazole-induced kindling epilepsy in rats. Med. Sci. Monit. 2018;24:6165. doi: 10.12659/MSM.910352

65. Alves M., Beamer E., Engel T. The metabotropic purinergic P2Y receptor family as novel drug target in epilepsy. Front. Pharmacol. 2018;9:193. doi: 10.3389/fphar.2018.00193

66. Alves M., Garcia L.D.D., Conte G., Jimenez-Mateos E.M., D’Orsi B., Sanz-Rodriguez A., Prehn J.H.M., Henshall D.S., Engel T. Context-specific switch from anti-to pro-epileptogenic function of –P2Y1 receptor in experimental epilepsy. J. Neurosci. 2019;39(27):5377–5392. doi: 10.1523/JNEUROSCI.0089-19.2019

67. Bae J., Kim Y.O., Han X., Yoon M.H., Kim W.M., Kim Y.C. Synthesis and structure–activity relationship studies of benzimidazole-4, 7-dione-Based P2X3 receptor antagonists as novel anti-nociceptive agents. Molecules. 2022;27(4):1337. doi: 10.3390/molecules27041337

68. Bae J., Kang K.M., Kim Y.C. Discovery of 5-methyl-1H-benzo [d] imidazole derivatives as novel P2X3 Receptor antagonists. Bioorg. Med. Chem. Lett. 2022;72:128820. doi: 10.1016/j.bmcl.2022.128820

69. Bano S., Hussain Z., Langer P., Weisman G.A., Iqba J. Synthesis, structure-activity relationships and biological evaluation of benzimidazole derived sulfonylurea analogues as a new class of antagonists of P2Y1 receptor. Front. Pharmacol. 2023;14:1217315. doi: 10.3389/fphar.2023.1217315

70. Mohazab R.A., Javadi-Paydar M., Delfan B., Dehpour A.R. Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res. 2012;101(1-2):28–35. doi: 10.1016/j.eplepsyres.2012.02.015

71. Ushiroda K., Maruta K., Takazawa T., Nagano T., Taiji M., Kohno T., Sato Y., Horai S., Yanagi K., Nagata R. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators. Bioorg. Med. Chem. Lett. 2011;21(7):1978–1982. doi: 10.1016/j.bmcl.2011.02.032

72. Lenkei Z., Palkovits M., Corvol P., Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain : a functional neuroanatomical review. Front. Neuroendocrinol. 1997;18(4):383–439. doi: 10.1006/frne.1997.0155

73. Whiting P., Nava S., Mozley L., Eastham H., Poat J. Expression of angiotensin converting enzyme mRNA in rat brain. Brain Res. Mol. Brain Res. 1991;11(1):93–96. doi: 10.1016/0169-328X(91)90026-T

74. Sirett N.E., Bray J.J., Hubbard J.I. Localization of immunoreactive angiotensin II in the hippocampus and striatum of rat brain. Brain. Res. 1981;217(2):405–411. doi: 10.1016/0006-8993(81)90019-6

75. Haas H.L., Felix D., Celio M.R., Inagami T. Angiotensin II in the hippocampus. A histochemical and electrophysiological study. Experientia. 1980;36(12):1394–1395. doi: 10.1007/BF01960117

76. Wright J.W., Harding J.W. Brain renin-angiotensin—a new look at an old system. Prog. Neurobiol. 2011;95(1):49–67. doi: 10.1016/j.pneurobio.2011.07.001

77. Roy T., Petersen N.N., Gopalan G., Gising J., Hallberg M., Larhed M. 2-Alkyl substituted benzimidazoles as a new class of selective AT2 receptor ligands. Bioorg. Med. Chem. 2022;66:116804. doi: 10.1016/j.bmc.2022.116804

78. Iqbal H., Verma A.K., Yadav P., Alam S., Shafiq M., Mishra D., Khan F., Hanif K., Negi A.S., Chanda D. Antihypertensive effect of a novel angiotensin II receptor blocker fluorophenyl benzimidazole: contribution of cGMP, voltage-dependent calcium channels, and BKCa channels to vasorelaxant mechanisms. Front. Pharmacol. 2021;12:611109. doi: 10.3389/fphar.2021.611109

79. Sahoo B.M., Banik B.K., Rao N.S., Raju B. Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. Curr. Microwave Chem. 2019;6(1):23–29. doi: 10.2174/2213335606666190429124745

80. Shaharyar M., Mazumder A., Garg R., Pandey R.D. Synthesis, characterization and pharmacological screening of novel benzimidazole derivatives. Arabian J. Chem. 2016;9(S1):342–347. doi: 10.1016/j.arabjc.2011.04.013

81. Partap S., Yar M.S., Hassan M.Z., Akhtar M.J., Siddiqui A.A. Design, synthesis, and pharmacological screening of pyridazinone hybrids as anticonvulsant agents. Archiv der Pharmazie. 2017;350(10):1700135. doi: 10.1002/ardp.201700135

82. Bhor R.J., Sable K.S., Bhosale M.S., Dighe S.B. Synthesis and anti convulsant activity of “N'-{4-[2-(1h-Benzimidazol-2-Yl)-2-Oxoethyl] Phenyl}-2-Hydroxyacetohydrazide and its derivatives”. Adv. Pharmacol. Pharm. 2023;11(1):46–56. doi: 10.13189/app.2023.110105

83. Kumar R., Abdullah M.M. Synthesis, characterization and anticonvulsant potential of 2,5-disubstituted 1,3,4-oxadiazole analogues. Asian J. Chem. 2019;31(6):1389–1397. doi: 10.14233/ajchem.2019.22061

84. Rajak H. Synthesis and evaluation of some novel semicarbazones based benzimidazole derivatives as anticonvulsant agent. Int. J. Chem. Eng. Appl. 2015;6(2):142. doi: 10.7763/IJCEA.2015.V6.469

85. Al-Karagully H.J., Mahmood A.A.R., Al-Shawi N.N., Fadhil A.A. Synthesis, characterization and anticonvulsant evaluation of new derivatives derived from 5-methoxy-2-mercapto benzimidazole. Der Pharm. Lett. 2016;8(18):96–101.

86. Li H., Kang D.Z., Wang S.B., Gong G.H., Quan Z.S. Synthesis and evaluation of the anticonvulsant activity of 9-alkyl-2,9-dihydro-3H-1,2,4-triazolo[4,3-a]benzimidazole-3-one derivatives. Lat. Am. J. Pharm. 2015;34(1):5–12.

87. Shingalapur R.V., Hosamani K.M., Keri R.S., Hugar M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem. 2010;45(5):1753–1759. doi: 10.1016/j.ejmech.2010.01.007


Review

For citations:


Matveev A.D., Shirshina A.M., Pridvorov G.V., Mukha O.Yu. Вenzimidazole derivatives with anticonvulsant activity and their pharmacological targets. Сибирский научный медицинский журнал. 2025;45(1):15-33. (In Russ.) https://doi.org/10.18699/SSMJ20250102

Views: 840


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)