Changes in the division rate of bone marrow cells in Wistar rats after exposure to nanosecond microwave pulses of different intensities
https://doi.org/10.18699/SSMJ20240616
Abstract
One of the promising areas of regenerative technologies is the stimulation of proliferative activity of stem cells and, accordingly, the rate of their self-renewal, by exposure to nanosecond repetitive pulsed microwave radiation (RPMs). The article presents data on the effect of nanosecond RPMs on the rate of division of mesenchymal stem cells from the femur of Wistar rats. Material and methods. Data are presented on the effect of nanosecond repetitively pulsed microwave radiation carrier frequency of 9.4 GHz, pulse repetition rate of 13 Hz, 50 pulses, peak power flux density of 140, 210, and 310 W/cm2, absorbed energy value in 50 pulses at a depth of 1 cm, respectively 699, 1049 and 1549×10–6 J/cm3 on the division rate of mesenchymal stem cells from the femur of laboratory rats Wistar. The effect of the exposure was assessed by the change in the number of cells in the culture 24 and 72 hours after a single irradiation with RPMs with different intensity. Results. Depending on the intensity of RPM, both an increase and inhibition of cell division rate were observed, that is, the response had a phasic character. The most pronounced stimulating acceleration of cell division is exerted by RPMs with a peak power flux density of 140 W/cm2, and the effect is realized at the maximum rate after 24 h. Conclusions. The most probable biophysical and physiological mechanisms for the formation of the effects of changes in the rate of self-renewal of stem cells induced by RPMs are considered.
Keywords
About the Authors
A. V. SamoylovaRussian Federation
Anna V. Samoylova - candidate of biological sciences.
634055, Tomsk, Academichesky ave., 2/3; 634050, Tomsk, Lenina ave., 36; 634050, Tomsk, Moskovsky path, 2
A. A. Gostyukhina
Russian Federation
Alena A. Gostyukhina - candidate of biological sciences.
634055, Tomsk, Academichesky ave., 2/3; 634050, Tomsk, Lenina ave., 36; 141551, Moscow region, Solnechnogorsk district, Goluboe village, Rodnikovaya st., p. 6, bidg. 1
L. P. Zharkova
Russian Federation
Lyubov P. Zharkova - candidate of biological sciences.
634055, Tomsk, Academichesky ave., 2/3; 634050, Tomsk, Lenina ave., 36
M. A. Bolshakov
Russian Federation
Mikhail A. Bolshakov - doctor of biological sciences, professor.
634055, Tomsk, Academichesky ave., 2/3; 634050, Tomsk, Lenina ave., 36
O. S. Doroshenko
Russian Federation
Olga S. Doroshenko.
634050, Tomsk, Lenina ave., 36; 141551, Moscow region, Solnechnogorsk district, Goluboe village, Rodnikovaya st., p. 6, bidg. 1
R. V. Tsygankov
Russian Federation
Ruslan V. Tsygankov.
634055, Tomsk, Academichesky ave., 2/3
K. V. Zaitsev
Russian Federation
Konstantin V. Zaitsev - doctor of medical sciences.
141551, Moscow region, Solnechnogorsk district, Goluboe village, Rodnikovaya st., p. 6, bidg. 1
V. V. Rostov
Russian Federation
Vladislav V. Rostov - doctor of physical and mathematical sciences, professor.
634055, Tomsk, Academichesky ave., 2/3
References
1. Farabi B., Roster K., Hirani R., Tepper K., Atak M.F., Safai B. The efficacy of stem cells in wound healing: a systematic review. Int. J. Mol. Sci. 2024;25(5):3006. doi: 10.3390/ijms25053006
2. Jin Y., Li S., Yu Q., Chen T., Liu D. Application of stem cells in regeneration medicine. MedComm. (2020). 2023;4(4):e291. doi: 10.1002/mco2.291
3. Kokai L.E., Marra K., Rubin J.P. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl. Res. 2014;163(4):399–408. doi: 10.1016/j.trsl.2013.11.009
4. Kereya A.V., Gostyukhina A.A., Mezheritsky S.A., Bol’shakov M.A., Zaitsev K.V., Kutenkov O.P., Rostov V.V. Proliferative activity of bone marrow mononuclear cells of rats after irradiation by nanosecond microwave pulses. Sovremennye voprosy biomeditsiny = Modern Issues of Biomedicine. 2019;2(7):6–22. [In Russian].
5. Samoylova A.V., Gostyukhina A.A., Bol’shakov M.A., Svetlik M.V., Doroshenko O.S., Kutenkov O.P., Zaitsev K.V., Rostov V.V. Possibilities to control the proliferation of hematopoietic stem cells after irradiation by nanosecond microwave pulses. Sovremennye voprosy biomeditsiny = Contemporary Issues in Biomedicine. 2021;5(1):15. [In Russian]. doi: 10.51871/2588-0500_2021_05_01_15
6. Gostyukhina А.А., Bolshakov М.А., Samoylova А.V., Doroshenko O.S., Svetlik M.V., Kutenkov O.P., Zaitsev K.V., Rostov V.V. Stimulation of mesenchymal stem cells proliferation from the femur of Wistar rats by nanosecond microwave radiation: dependence on the number of pulses. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. 2023;63(1):80–86. [In Russian]. doi: 10.31857/S0869803123010083
7. Adey W.R. Biological effects of electromagnetic fields. J. Cell. Biochem. 1993;51(4):410–416.
8. Kereya A.V., Bol’shakov M.A., Zharkova L.P., Ivanov V.V., Knyazeva I.R., Kutenkov O.P., Rostov V.V., Semenova Yu.N. The epididymal adipose tissue of mice after nanosecond pulse-periodic microwave irradiation. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. 2014;54(6);606–612. [In Russian]. doi: 10.7868/S0869803114060071
9. Kereya A.V., Bolshakov M.A., Khodanovich M.Yu., Nemirovich-Danchenko N.M., Kutenkov O.P., Rostov V.V. Evaluation of mice brain reactions after nanosecond microwave pulses using c-fos expression. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. 2017;57(2):179–184. [In Russian]. doi: 10.7868/S0869803117020072
10. Samoylova А.V., Bolshakov М.А., Zharkova L.P. Gostyukhina A.A., Kutenkov O.P., Rostov V.V. Behavioral activity and corticosterone level in the mice blood serum during the 7-day exposure to nanosecond microwave pulses. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. 2021;61(2):168–174. [In Russian]. doi:10.31857/S0869803121020107
11. Tan S., Wang H., Xu X., Zhao L., Zhang J., Dong J., Yao B., Wang H., Zhou H., Gao Ya., Peng R. Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats. Sci. Rep. 2017;7(1):10781. doi: 10.1038/s41598-017-11420-9
12. Shakhov V.P., Khlusov I.A., Dambaev G.Ts. Introduction to cell culture methods, bioengineering of organs and tissues. Tomsk: STT, 2004. 386 p. [In Russian].
13. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Available at: http://data.europa.eu/eli/dir/1986/609/oj
14. Tsygankov R.V., Rostov V.V., Bolshakov M.A., Samoylova A.V., Zharkova L.P., Gostyukhina A.A., Kutenkov O.P. Application of nanosecond microwave pulses in batch regime for healing of burn wounds. International Research Journal. 2024;(1):1‒17. doi: 10.23670/IRJ.2024.139.11
15. Malik N.A., Sant P., Ajmal T., Ur-Rehman M. Implantable antennas for biomedical applications. IEEE Transactions on Biomedical Engineering. 2021;5(1):84–96. doi: 10.1109/JERM.2020.3026588
16. Peyman A., Rezazadeh A.A., Gabriel C. Changes in the dielectric proper ties of rat tissue as a function of age at microwave frequencies. Phys. Med. Biol. 2001;46(6):1617–1629. doi: 10.1088/0031-9155/46/6/303
17. Sasaki K., Porter E., Rashed E.A., Farrugia L., Schmid G. Measurement and image-based estimation of dielectric properties of biological tissues – past, present, and future. Phys. Med. Biol. 2022;67(14):14TR01. doi: 10.1088/1361-6560/ac7b64
18. Medik V.A., Tokmachev M.S., Fishman B.B. Statistics in medicine and biology. Moscow: Meditsina; 2000. 412 p. [In Russian].
19. Moore K.A., Lemischka I.R. Stem cells and their niches. Science. 2006;311(5769):1880–1885. doi: 10.1126/science.1110542
20. Comazzetto S., Shen B., Morrison S.J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell. 2021;56(13):1848–1860. doi: 10.1016/j.devcel.2021.05.018
21. Nimiritsky P.P., Sagaradze G.D., Efimenko A.Yu., Makarevich P.I., Tkachuk V.A. The stem cell niche. Cell Tissue Biol. 2019;53(6):1012–1019. doi: 10.31116/tsitol.2018.08.01
22. Belyavsky A.V. Niches of hematopoietic stem cells in bone marrow. Mol. Biol. (Mosc.). 2019;53(6):889–895. doi: 10.1134/S0026898419060028
23. Wei Q., Frenette P.S. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48(4):632–648. doi: 10.1016/j.immuni.2018.03.024
24. Chen S., Fang W., Ye F., Liu Yu.H., Qian J., Shan Sh.J., Chunhua R.Zh., Liao L.M. Lin S., Sun J.P. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 2004;94(1):92–95. doi: 10.1016/j.amjcard.2004.03.034
25. Kim T.J., Joo C., Seong J., Vafabakhsh R., Botvinick E., Berns M.W., Palmer A.E., Wang N., Ha T., Jakobsson E., Sun J., Wang Y. Distinct mechanisms regulating mechanical force-induced Ca(2+) signals at the plasma membrane and the ER in human MSCs. eLife. 2015;4:e04876. doi: 10.7554/eLife.04876
26. Jackson M.B. Molecular and cellular biophysics. Moscow: Mir, 2009. 551 p. [In Russian].
Review
For citations:
Samoylova A.V., Gostyukhina A.A., Zharkova L.P., Bolshakov M.A., Doroshenko O.S., Tsygankov R.V., Zaitsev K.V., Rostov V.V. Changes in the division rate of bone marrow cells in Wistar rats after exposure to nanosecond microwave pulses of different intensities. Сибирский научный медицинский журнал. 2024;44(6):162-170. (In Russ.) https://doi.org/10.18699/SSMJ20240616