Preview

Сибирский научный медицинский журнал

Advanced search

Wound healing properties of a chimeric form of human GM-CSF in a rat burn injury model

https://doi.org/10.18699/SSMJ20240614

Abstract

Thermal burns are one of the common types of human injuries, causing in severe cases an extensive immune response both locally in the wound and having a systemic effect. The search for new means of local treatment of burn wounds remains an urgent task. The aim of this study was to investigate the wound healing properties of recombinant granulocyte-macrophage colony-stimulating factor (ryGM-CSF) and its prolonged chimeric form with human apolipoprotein AI (ryGM-CSF-apoAI) on the model of burn injury in rats. Material and methods. ryGM-CSF and ryGM-CSF-apoAI obtained by expression in yeast P. pastoris were used in this work. The study was performed on 27 Wistar rats, which were modeled burns of III degree. The wound-healing effect of recombinant cytokines was evaluated morphologically, and the expression of cytokine genes - markers of the course of the wound process and angiogenesis - was measured. Results and discussion. ryGM-CSF is known to accelerate wound healing. Human rGM-CSF on the rat burn model showed both the properties of a cytokine influencing angiogenesis, increasing the number of vessels, and being a foreign protein stimulated the immune response, increasing prolonged the number of lymphocytes and supporting inflammation. The chimeric form of cytokine ryGM-CSF-apoAI reduced inflammation, accelerated the change of wound healing phases and, as a consequence, reduced the number of neutrophils by 16 days. Unexpectedly, it induced maturation of vessels, which in this case had normal lumen, size, and were lined with endothelium. The ratio Angpt1 and Angpt2 gene mRNA content was 2-fold higher when ryGM-CSF-apoAI was used, compared to control and ryGM-CSF administration. Conclusions. With xenogeneous administration, recombinant human GM-CSF prolongs inflammation due to early lymphocytic response to foreign protein and increased neutrophil content at later wound healing periods. The chimeric form ryGM-CSF-apoAI reduces cytokine immunogenicity by promoting earlier replacement of neutrophils by macrophages and fibroblasts and stimulates maturation of high-grade blood vessels.

About the Authors

M. B. Pykhtina
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Maria B. Pykhtina - сandidate of biological sciences.

630117, Novosibirsk, Timakova st., 2



S. M. Miroshnichenko
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Svetlana M. Miroshnichenko.

630117, Novosibirsk, Timakova st., 2



M. A. Karpov
Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Mikhail A. Karpov - сandidate of medical sciences.

630117, Novosibirsk, Timakova st., 2; 630091, Novosibirsk, Krasny ave., 52



A. A. Abyshev
Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Alexandr A. Abyshev.

630117, Novosibirsk, Timakova st., 2; 630091, Novosibirsk, Krasny ave., 52



K. I. Mosalev
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Kirill I. Mosalev.

630117, Novosibirsk, Timakova st., 2



M. V. Kotova
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Maria V. Kotova.

630117, Novosibirsk, Timakova st., 2



A. A. Beklemishev
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Anatoly B. Beklemishev - doctor of biological sciences.

630117, Novosibirsk, Timakova st., 2



R. A. Knyazev
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Roman A. Knyazev - сandidate of biological sciences.

630117, Novosibirsk, Timakova st., 2



References

1. WHO. The global burden of disease 2004. Available at: https://iris.who.int/bitstream/handle/10665/43942/9789241563710_eng.pdf

2. Norbury W., Herndon D.N., Tanksley J., Jeschke M.G., Finnerty C.C. Infection in burns. Surg. Infect. (Larchmt.). 2016;17(2):250–255. doi: 10.1089/sur.2013.134

3. Boldeanu L., Boldeanu M.V., Bogdan M., Meca A.D., Coman C.G., Buca B.R., Tartau C.G., Tartau L.M. Immunological approaches and therapy in burns (review). Exp. Ther. Med. 2020;20(3):2361–2367. doi: 10.3892/etm.2020.8932

4. Singer A.J., Clark R.A. Cutaneous wound healing. N. Engl. J. Med. 1999;341(10):738–746. doi: 10.1056/NEJM199909023411006

5. Demidova-Rice T.N., Hamblin M.R., Herman I.M. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv. Skin. Wound. Care. 2012;25(8):349–370. doi: 10.1097/01.ASW.0000418541.31366.a3

6. Holoubek J., Lipový B., Knoz M., Kempný T., Chaloupková R., Damborský J., Vojtová L. The future for the application of fibroblast growth factor 2 in modern wound healing. Burns. 2023; 49(2):484–486. doi: 10.1016/j.burns.2022.10.007

7. Guo H.F., Abd Hamid R., Mohd Ali R., Chang S.K., Rahman M.H., Zainal Z., Khaza’ai H. Healing properties of epidermal growth factor and tocotrienol-rich fraction in deep partial-thickness experimental burn wounds. Antioxidants (Basel). 2020;9(2):130. doi: 10.3390/antiox9020130

8. Robson M.C., Phillips T.J., Falanga V., Odenheimer D.J., Parish L.C., Jensen J.L., Steed D.L. Randomized trial of topically applied repifer-min (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers. Wound Repair Regen. 2001;9(5):347–352. doi: 10.1046/j.1524-475x.2001.00347.x

9. Rubbia-Brandt L., Sappino A.P., Gabbiani G. Locally applied GM-CSF induces the accumulation of alpha-smooth muscle actin containing myofibroblasts. Virchows Arch. B. Cell Pathol. Incl. Mol. Pathol. 1991;60(2):73–82. doi: 10.1007/BF02899530

10. Khajah M., Millen B., Cara D.C., Waterhouse C., McCafferty D.M. Granulocyte-macrophage colony-stimulating factor (GM-CSF): a chemoattractive agent for murine leukocytes in vivo. J. Leukoc. Biol. 2011;89(6):945–953. doi: 10.1189/jlb.0809546

11. Kaplan G., Walsh G., Guido L.S., Meyn P., Burkhardt R.A., Abalos R.M. Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing. J. Exp. Med. 1992;175(6):1717–1728. doi: 10.1084/jem.175.6.1717

12. Fang Y., Gong S.J., Xu Y.H., Hambly B.D., Bao S. Impaired cutaneous wound healing in granulocyte–macrophage colony–stimulating factor knock-out mice. Br. J. Dermatol. 2007;157(3):458–465. doi: 10.1111/j.1365–2133.2007.07979.x

13. Karlafti E., Savopoulos C., Hatzitolios A., Didangelos T. Local use of granulocyte-macrophages colony stimulating factor in treatment of chronic diabetic neuropathic ulcer (case review). Georgian Med. News. 2018;(277):21–27.

14. Li J., Liu W., Zhang G., Wang D., Lou H., Duang J. Effectiveness of recombinant human granulocyte macrophage colony-stimulating factor for treating deep second-degree burns: a systematic review and meta-analysis. BMJ. Mil. Health. 2020;166(5):352–357. doi: 10.1136/bmjmilitary-2019-001395

15. Yan D., Liu S., Zhao X., Bian H., Yao X., Xing J., Sun W., Chen X. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing. Medicine (Baltimore). 2017;96(22):e6881. doi: 10.1097/MD.0000000000006881

16. Chuang Y.M., He L., Pinn M.L., Tsai Y.C., Cheng M.A., Farmer E., Karakousis P.C., Hung C.F. Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell. Mol. Immunol. 2021;18(10):2393–2401. doi: 10.1038/s41423-020-0439-2

17. Pykhtina M., Miroshnichenko S., Romanov V., Grazhdantseva A., Kochneva G., Beklemishev A. Construction of recombinant human GM-CSF and GM-CSF-ApoA-I fusion protein and evaluation of their biological activity. Pharmaceuticals (Basel). 2021;14(5):459. doi: 10.3390/ph14050459

18. Kupper T.S., Ballard D.W., Chua A.O., McGuire J.S., Flood P.M., Horowitz M.C., Langdon R., Lightfoot L., Gubler U. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA. Keratinocyte epidermal cell-derived thymocyte-activating factor is identical to interleukin 1. J. Exp. Med. 1986;164(6):2095–2100. doi: 10.1084/jem.164.6.2095

19. Salgado R.M., Alcántara L., Mendoza-Rodríguez C.A., Cerbón M., Hidalgo-González C., Mercadillo P., Moreno L.M., Álvarez-Jiménez R., Krötzsch E. Post-burn hypertrophic scars are characterized by high levels of IL-1β mRNA and protein and TNF-α type I receptors. Burns. 2012;38(5):668–676. doi: 10.1016/j.burns.2011.12.012

20. Blears E., Sommerhalder C., Toliver-Kinsky T., Finnerty C.C., Herndon D.N. Current problems in burn immunology. Curr. Probl. Surg. 2020;57(6):100779. doi: 10.1016/j.cpsurg.2020.100779

21. Buck M., Houglum K., Chojkier M. Tumor necrosis factor-alpha inhibits collagen alpha1(I) gene expression and wound healing in a murine model of cachexia. Am. J. Pathol. 1996;149(1):195–204

22. Sun H., Wang X., Hu X., Yu W., You C., Hu H., Han C. Promotion of angiogenesis by sustained release of rhGM-CSF from heparinized collagen/chitosan scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater. 2012;100(3):788–798. doi: 10.1002/jbm.b.32512

23. Zhao J., Chen L., Shu B., Tang J., Zhang L., Xie J., Qi S., Xu Y. Granulocyte/macrophage colony-stimulating factor influences angiogenesis by regulating the coordinated expression of VEGF and the Ang/Tie system. PLoS. One. 2014;9(3):e92691. doi: 10.1371/journal.pone.0092691


Review

Views: 679


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)