Особенности биораспределения наночастиц золота in vivo
https://doi.org/10.18699/SSMJ20240608
Аннотация
Наночастицы золота обладают уникальными физическими, химическими и оптическими свойствами, благодаря чему на их основе разрабатывают перспективные лекарственные средства: радиосенсибилизаторы, рентгеноконтрастные препараты, агенты для фототермической терапии, лекарственные средства направленной доставки. При этом в каждом случае выбор параметров наночастиц обусловлен не только областью применения, но и характером биораспределения в живом организме: длительностью циркуляции в кровотоке и способностью накапливаться в целевых органах и тканях, включая опухоль. Для этого наночастицы должны избегать фагоцитоза макрофагами печени. Целью данного обзора послужила систематизация информации о влиянии параметров наночастиц золота на их фармакокинетические свойства и биораспределение в организме мелких лабораторных животных, как интактных, так и с трансплантированной опухолью. Рассмотрены такие параметры наночастиц, как размер, стабилизирующее покрытие, форма. Наночастицы меньшего размера, как правило, дольше циркулируют в кровотоке и медленнее накапливаются в печени животного. Для защиты от агрегации, опсонизации и фагоцитоза используют различные варианты покрытия наночастиц, например, цитрат, бычий сывороточный альбумин или полиэтиленгликоль. Влияние формы наночастиц на биораспределение до сих пор недостаточно изучено; предположительно, она имеет меньшее значение, чем размер и покрытие. В целом имеющиеся данные указывают на то, что оптимальными фармакокинетическими свойствами для биомедицинского применения обладают наночастицы золота с диаметром до 50 нм, имеющие экранирующее полимерное покрытие.
Ключевые слова
Об авторах
Ю. А. ФиногеноваРоссия
Финогенова Юлия Андреевна.
115522, Москва, Каширское шоссе, 23
А. А. Липенгольц
Россия
Липенгольц Алексей Андреевич - к.ф.-м.н.
115522, Москва, Каширское шоссе, 23; 115409, Москва, Каширское шоссе, 31
В. А. Скрибицкий
Россия
Скрибицкий Всеволод Андреевич.
115522, Москва, Каширское шоссе, 23; 115409, Москва, Каширское шоссе, 31
К. Е. Шпакова
Россия
Шпакова Кристина Евгеньевна.
115522, Москва, Каширское шоссе, 23; 115409, Москва, Каширское шоссе, 31
А. В. Смирнова
Россия
Смирнова Анна Вячеславовна - к.б.н.
115522, Москва, Каширское шоссе, 23; 11123, Москва, шоссе Энтузиастов, 86
Н. Н. Сычева
Россия
Сычева Наталья Николаевна.
115409, Москва, Каширское шоссе, 31
Е. Ю. Григорьева
Россия
Григорьева Елена Юрьевна - д.б.н.
115522, Москва, Каширское шоссе, 23
Список литературы
1. Milan J., Niemczyk K., Kus-Liśkiewicz M. Treasure on the earth-gold nanoparticles and their biomedical applications. Materials (Basel). 2022;15(9):3355. doi: 10.3390/ma15093355
2. Kesharwani P., Ma R., Sang L., Fatima M., Sheikh A., Abourehab M.A.S., Gupta N., Chen Z.S., Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer. 2023;22(1):98. doi: 10.1186/s12943-023-01798-8
3. Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–6392.
4. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release. 2016;244(Pt A):108–121. doi: 10.1016/j.jconrel.2016.11.015
5. Natfji A.A., Ravishankar D., Osborn H.M.I., Greco F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci. 2017;106(11):3179–3187. doi: 10.1016/j.xphs.2017.06.019
6. Liu X., Jiang J., Meng H. Transcytosis – an effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics. 2019;9(26):8018–8025. doi: 10.7150/thno.38587
7. Golombek S.K., May J.N., Theek B., Appold L., Drude N., Kiessling F., Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007
8. Ejigah V., Owoseni O., Bataille-Backer P., Ogundipe O.D., Fisusi F.A., Adesina S.K. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers (Basel). 2022;14(13):2601. doi: 10.3390/polym14132601
9. Wang L., Rao Y., Liu X., Sun L., Gong J., Zhang H., Shen L., Bao A., Yang H. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung. J. Nanobiotechnology. 2021;19(1):56. doi: 10.1186/s12951-021-00803-w
10. Enea M., Pereira E., Silva D.D., Costa J., Soares M.E., de Lourdes Bastos M., Carmo H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology. 2020;31(19):195102. doi: 10.1088/1361-6528/ab6dfb
11. Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011;40(3):1647–1671. doi: 10.1039/c0cs00018c
12. Sodipo B., Kasim Mohammed Z. Advances in biodistribution of gold nanoparticles: the influence of size, surface charge, and route of administration. Biomed. Mater. 2024;19:042010. doi: 10.1088/1748-605X/ad5484
13. Haute D.V., Berlin J.M. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles. Ther. Deliv. 2017;8(9):763–774. doi: 10.4155/tde-2017-0057
14. Vert M., Doi Y., Hellwich K., Hess M., Hodge P., Kubisa P., Rinaudo M., Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry. 2012;84(2):377–410. doi: 10.1351/PAC-REC-10-12-04
15. Chithrani B.D., Ghazani A.A., Chan W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano lett. 2006;6(4):662–668. doi: 10.1021/nl052396o
16. Walkey C.D., Olsen J.B., Guo H., Emili A., Chan W.C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012;134(4):2139–2147. doi: 10.1021/ja2084338
17. Li X., Hu Z., Ma J., Wang X., Zhang Y., Wang W., Yuan Z. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B. Biointerfaces. 2018;167:260–266. doi: 10.1016/j.colsurfb.2018.04.005
18. Xia Q., Huang J., Feng Q., Chen X., Liu X., Li X., Zhang T., Xiao S., Li H., Zhong Z., Xiao K. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int. J. Nanomedicine. 2019;14:6957–6970. doi: 10.2147/IJN.S214008
19. Cho W.S., Cho M., Jeong J., Choi M., Han B.S., Shin H.S., Hong J., Chung B.H., Jeong J., Cho M.H. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2010;245(1):116–123. doi: 10.1016/j.taap.2010.02.013
20. Skribitsky V.A., Finogenova Y.A., Lipengolts A.A., Pozdniakova N.V., Smirnova A.V., Shpakova K.E., Grigorieva E.Y. In vivo studies of laser-ablated gold nanoparticles as dose enhancers for binary radiotherapy of cancer. Physics of Atomic Nuclei. 2022;85(9):1598–1602. doi: 10.1134/S1063778822090356
21. Dong Y.C., Hajfathalian M., Maidment P.S.N., Hsu J.C., Naha P.C., Si-Mohamed S., Breuilly M., Kim J., Chhour P., Douek P., Litt H.I., Cormode D.P. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep. 2019;9(1):14912. doi: 10.1038/s41598-019-50332-8
22. de Jong W.H., Hagens W.I., Krystek P., Burger M.C., Sips A.J., Geertsma R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919. doi: 10.1016/j.biomaterials.2007.12.037
23. Sonavane G., Tomoda K., Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B. Biointerfaces. 2008;66(2):274–280. doi: 10.1016/j.colsurfb.2008.07.004
24. Behroozi Z., Rahimi B., Kookli K., Safari M.S., Hamblin M.R., Razmgir M., Janzadeh A., Ramezani F. Distribution of gold nanoparticles into the brain: a systematic review and meta-analysis. Nanotoxicology. 2021;15(8):1059–1072. doi: 10.1080/17435390.2021.1966116
25. Male D., Gromnicova R., McQuaid C. Gold nanoparticles for imaging and drug transport to the CNS. Int. Rev. Neurobiol. 2016;130:155–198. doi: 10.1016/bs.irn.2016.05.003
26. Hirn S., Semmler-Behnke M., Schleh C., WenkA., Lipka J., Schäffler M., Takenaka S., Möller W., Schmid G., Simon U., Kreyling W.G. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011;77(3):407–416. doi: 10.1016/j.ejpb.2010.12.029
27. Hainfeld J.F., Smilowitz H.M., O’Connor M.J., Dilmanian F.A., Slatkin D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond). 2013;8(10):1601–1609. doi: 10.2217/nnm.12.165
28. Lansangan C., Khoobchandani M., Jain R., Rudensky S., Perry C.C., Patil R. Designing gold nanoparticles for precise glioma treatment: challenges and alternatives. Materials (Basel). 2024;17(5):1153. doi: 10.3390/ma17051153.
29. Norouzi M. Gold nanoparticles in glioma theranostics. Pharmacol. Res. 2020;156:104753. doi: 10.1016/j.phrs.2020.104753
30. Zhang G., Yang Z., Lu W., Zhang R., Huang Q., Tian M., Li L., Liang D., Li C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30(10):1928–1936. doi: 10.1016/j.biomaterials.2008.12.038
31. Perrault S.D., Walkey C., Jennings T., Fischer H.C., Chan W.C. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–1915. doi: 10.1021/nl900031y
32. Liu S., Piao J., Liu Y., Tang J., Liu P., Yang D., Zhang L., Ge N., Jin Z., Jiang Q., Cui L. Radiosensitizing effects of different size bovine serum albumintemplated gold nanoparticles on H22 hepatoma-bearing mice. Nanomedicine (Lond). 2018;13(11):1371–1383. doi: 10.2217/nnm-2018-0059
33. Du B., Yu M., Zheng J. Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials. 2018;3(10):358–374. doi: 10.1038/s41578-018-0038-3
34. Xie M., Xu Y., Huang J., Li Y., Wang L., Yang L., Mao H. Going even smaller: Engineering sub-5 nm nanoparticles for improved delivery, biocompatibility, and functionality. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12(6):e1644. doi: 10.1002/wnan.1644
35. Verry C., Dufort S., Villa J., Gavard M., Iriart C., Grand S., Charles J., Chovelon B., Cracowski J.L., Quesada J.L., … Balosso J. Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial) Radiother. Oncol. 2021;160:159–165. doi: 10.1016/j.radonc.2021.04.021
36. Zhang X.D., Wu D., Shen X., Liu P.X., Fan F.Y., Fan S.J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628–4638. doi: 10.1016/j.biomaterials.2012.03.020
37. Huang K., Ma H., Liu J., Huo S., Kumar A., Wei T., Zhang X., Jin S., Gan Y., Wang P.C., … Liang X.J. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–4493. doi: 10.1021/nn301282m
38. Zhang X.D., Chen J., Luo Z., Wu D., Shen X., Song S.S., Sun Y.M., Liu P.X., Zhao J., Huo S., … Xie J. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014;3(1):133–141. doi: 10.1002/adhm.201300189
39. Zhang X.D., Luo Z., Chen J., Song S., Yuan X., Shen X., Wang H., Sun Y., Gao K., Zhang L., … Xie J. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015;5:8669. doi: 10.1038/srep08669
40. Zhang X.D., Luo Z., Chen J., Shen X., Song S., Sun Y., Fan S., Fan F., Leong D.T., Xie J. Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014;26(26):4565–4568. doi: 10.1002/adma.201400866
41. Naumenko V., Nikitin A., Kapitanova K., Melnikov P., Vodopyanov S., Garanina A., Valikhov M., Ilyasov A., Vishnevskiy D., Markov A., … Majouga A. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney. J. Control. Release. 2019;307:368–378. doi: 10.1016/j.jconrel.2019.06.026
42. Popov A.A., Tselikov G., Al-Kattan A., Kabashin A.V. Femtosecond laser-ablative synthesis of plasmonic Au and TiN nanoparticles for biomedical applications. Synthesis and Photonics of Nanoscale Materials XVI: proc. conf., 4 March 2019. 2019;10907:1090708. doi: 10.1117/12.2513970
43. Skribitsky V.A., Pozdniakova N.V., Lipengolts A.A., Popov A.A., Tikhonowski G.V., Finogenova Yu.A., Smirnova A.V., Grigorieva E.Y. A Spectrophotometric method for estimation of the size and concentration of laser ablated gold nanoparticles. Biophysics. 2022;67(1):22–26. doi: 10.1134/S0006350922010171
44. Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11:55–75. doi: 10.1039/DF9511100055
45. Mahato K., Nagpal S., Shah M.A., Srivastava A., Maurya P.K., Roy S., Jaiswal A., Singh R., Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech. 2019;9(2):57. doi: 10.1007/s13205-019-1577-z
46. Gao H., He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin. Drug Deliv. 2014;11(3):409–420. doi: 10.1517/17425247.2014.877442
47. Wang J., Bai R., Yang R., Liu J., Tang J., Liu Y., Li J., Chai Z., Chen C. Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics. 2015;7(3):516–524. doi: 10.1039/c4mt00340c
48. Arvizo R.R., Miranda O.R., Moyano D.F., Walden C.A., Giri K., Bhattacharya R., Robertson J.D., Rotello V.M., Reid J.M., Mukherjee P. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011;6(9):e24374. doi: 10.1371/journal.pone.0024374
49. Elci S.G., Jiang Y., Yan B., Kim S.T., Saha K., Moyano D.F., Yesilbag Tonga G., Jackson L.C., Rotello V.M., Vachet R.W. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano. 2016;10(5):5536–5542. doi: 10.1021/acsnano.6b02086
50. Shi L., Zhang J., Zhao M., Tang S., Cheng X., Zhang W., Li W., Liu X., Peng H., Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748–10764. doi: 10.1039/d1nr02065j
51. Niidome T., Yamagata M., Okamoto Y., Akiyama Y., Takahashi H., Kawano T., Katayama Y., Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release. 2006;114(3):343-347. doi: 10.1016/j.jconrel.2006.06.017
52. Kozics K., Sramkova M., Kopecka K., Begerova P., Manova A., Krivosikova Z., Sevcikova Z., Liskova A., Rollerova E., Dubaj T., … Gabelova A. Pharmacokinetics, biodistribution, and biosafety of PEGylated gold nanoparticles in vivo. Nanomaterials (Basel). 2021;11(7):1702. doi: 10.3390/nano11071702
53. Lipka J., Semmler-Behnke M., Sperling R.A., Wenk A., Takenaka S., Schleh C., Kissel T., Parak W.J., Kreyling W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574–6581. doi: 10.1016/j.biomaterials.2010.05.009
54. Larson T.A., Joshi P.P., Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6(10);9182–9190. doi: 10.1021/nn3035155
55. Goddard Z.R., Marín M.J., Russell D.A., Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 2020;49(23):8774–8789. doi: 10.1039/d0cs01121e
56. Ahmad A., Khan F., Mishra R.K., Khan R. Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. 2019;62(23):10475–10496. doi: 10.1021/acs.jmedchem.9b00511
57. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials. 2016;1(5):1–12. doi: 10.1038/natrevmats.2016.14
58. Ortiz-Castillo J.E., Gallo-Villanueva R.C., Madou M.J., Perez-Gonzalez V.H. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coordination Chemistry Reviews. 2020;425:213489. doi: 10.1016/j.ccr.2020.213489
59. Liu Y., Crawford B.M., Vo-Dinh T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy. 2018;10(13):1175–1188. doi: 10.2217/imt-2018-0029
60. Zhou R., Zhang M., Xi J., Li J., Ma R., Ren L., Bai Z., Qi K., Li X. Gold nanorods-based photothermal therapy: interactions between biostructure, nanomaterial, and near-infrared irradiation. Nanoscale Res. Lett. 2022;17(1):68. doi: 10.1186/s11671-022-03706-3
61. Jue J.S., Coons S., Hautvast G., Thompson S.F., Geraats J., Richstone L., Schwartz M.J., Rastinehad A.R. Novel automated three-dimensional surgical planning tool and magnetic resonance imaging/ ultrasound fusion technology to perform nanoparticle ablation and cryoablation of the prostate for focal therapy. J. Endourol. 2022;36(3):369–372. doi: 10.1089/end.2021.0266
62. Sung D., Sanchez A., Tward J.D. Successful salvage brachytherapy after infusion of gold auroshell nanoshells for localized prostate cancer in a human patient. Adv. Radiat. Oncol. 2023;8(4):101202. doi: 10.1016/j.adro.2023.101202
63. Zu L., Liu L., Qin Y., Liu H., Yang H. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography. Nanomedicine. 2016;12(7):1805–1813. doi: 10.1016/j.nano.2016.05.003
64. Ma N., Liu P., He N., Gu N., Wu F.G., Chen Z. Action of gold nanospikes-based nanoradiosensitizers: cellular internalization, radiotherapy, and autophagy. ACS Appl. Mater. Interfaces. 2017;9(37):31526–31542. doi: 10.1021/acsami.7b09599
65. Bhattarai S.R., Derry P.J., Aziz K., Singh P.K., Khoo A.M., Chadha A.S., Liopo A., Zubarev E.R., Krishnan S. Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale. 2017;9(16):5085–5093. doi: 10.1039/c6nr08172j
66. Terentyuk G.S., Maslyakova G.N., Suleymanova L.V., Khlebtsov B.N., Kogan B.Y., Akchurin G.G., Shantrocha A.V., Maksimova I.L., Khlebtsov N.G., Tuchin V.V. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J. Biophotonics. 2009;2(5):292–302. doi: 10.1002/jbio.200910005
67. Pannerec-Varna M., Ratajczak P., Bousquet G., Ferreira I., Leboeuf C., Boisgard R., Gapihan G., Verine J., Palpant B., Bossy E., … Janin A. In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer. Gold Bulletin. 2013;46:257–265. doi: 10.1007/s13404-013-0115-8
68. Talamini L., Violatto M.B., Cai Q., Monopoli M.P., Kantner K., Krpetić Ž., Perez-Potti A., Cookman J., Garry D., Silveira C.P., … Bigini P. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano. 2017;11(6):5519–5529. doi: 10.1021/acsnano.7b00497
69. Niidome T., Akiyama Y., Yamagata M., Kawano T., Mori T., Niidome Y., Katayama Y. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia. J. Biomater. Sci. Polym. Ed. 2009;20(9):1203–1215. doi: 10.1163/156856209X452953
70. Akiyama Y., Mori T., Katayama Y., Niidome T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J. Control Release. 2009;139(1):81–84. doi: 10.1016/j.jconrel.2009.06.006
71. Arnida, Janát-Amsbury M.M., Ray A., Peterson C.M., Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 2011;77(3):417–423. doi: 10.1016/j.ejpb.2010.11.010
72. Black K.C., Wang Y., Luehmann H.P., Cai X., Xing W., Pang B., Zhao Y., Cutler C.S., Wang L.V., Liu Y., Xia Y. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 2014;8(5):4385–4394. doi: 10.1021/nn406258m
73. Akiyama Y., Mori T., Katayama Y., Niidome T. Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice. Nanoscale Res. Lett. 2012;7(1):565. doi: 10.1186/1556-276X-7-565
74. Wolfe T., Chatterjee D., Lee J., Grant J.D., Bhattarai S., Tailor R., Goodrich G., Nicolucci P., Krishnan S. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo.. 2015;11(5):1277–1283. doi: 10.1016/j.nano.2014.12.016
75. Zhao N., Yang Z., Li B., Meng J., Shi Z., Li P., Fu S. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int. J. Nanomedicine. 2016;11:5595–5610. doi: 10.2147/IJN.S104034
76. Zhang J., Nie X., Ji Y., Liu Y., Wu X., Chen C., Fang X. Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J. Nanosci. Nanotechnol. 2014;14(6):4124–4138. doi: 10.1166/jnn.2014.8274
Рецензия
Для цитирования:
Финогенова Ю.А., Липенгольц А.А., Скрибицкий В.А., Шпакова К.Е., Смирнова А.В., Сычева Н.Н., Григорьева Е.Ю. Особенности биораспределения наночастиц золота in vivo. Сибирский научный медицинский журнал. 2024;44(6):83-96. https://doi.org/10.18699/SSMJ20240608
For citation:
Finogenova Yu.A., Lipengolts A.A., Skribitsky V.A., Shpakova K.E., Smirnova A.V., Sycheva N.N., Grigorieva E.Yu. Biodistribution of gold nanoparticles in vivo. Сибирский научный медицинский журнал. 2024;44(6):83-96. (In Russ.) https://doi.org/10.18699/SSMJ20240608