Intestinal monoamine oxidase activity in premature and full-term infants with surgical pathology
https://doi.org/10.18699/SSMJ20240620
Abstract
Advances in pediatric surgery, intensive care, and anesthesiology have significantly improved the outcomes of surgical treatment of full-term and premature infants with intestinal malformations and necrotizing enterocolitis (NEC). The main challenges in treating children of this complex group today lie in improving diagnostics, choosing treatment tactics, and ensuring the postoperative period. Monoamine oxidase (MAO) is a mitochondrial enzyme that catalyzes oxidative deamination of biogenic and xenobiotic monoamines, including those in intestinal wall cells and tissues. It can be a prognostic and diagnostic marker of the effectiveness and rate of intestinal recovery in the postoperative period, and also serve as a point of application for pharmacological correction. The aim of the study is to determine the activity of intestinal MAO in children of the first year of life with surgical pathology. Material and methods. The study included 24 patients with colon and small intestine pathologies, aged from 1 day to 3 months, who were treated at the Chelyabinsk Regional Children’s Clinical Hospital from October 2022 to May 2024. MAO-A and MAO-B activity was studied by spectrophotometry in intestinal homogenates obtained at the proximal resection margin. Results and discussion. Intestinal samples obtained from patients with diseases accompanied by pronounced inflammatory changes (NEC stage IIIA–IIIB, enterostomy closure after NEC III, intestinal neuronal dysplasia (IND), Hirschsprung’s disease) showed a significant decrease in the activity of the MAO-A isoform. A decrease in MAO-B activity was demonstrated in intestinal wall samples obtained from children with confirmed diagnoses of Hirschsprung’s disease and intestinal neuronal dysplasia, as well as in premature infants with surgical stages of NEC. The highest activity of both enzyme isoforms was found in sigmoid colon samples without pathological changes in patients with anal and rectum atresia.
Keywords
About the Authors
P. K. VinelRussian Federation
Polina K. Vinel.
454092, Chelyabinsk, Vorovskogo st., 64
A. I. Sinitskii
Russian Federation
Anton I. Sinitskii - doctor of medical sciences.
454092, Chelyabinsk, Vorovskogo st., 64
V. V. Tsareva
Russian Federation
Valentina V. Tsareva - candidate of medical sciences.
454092, Chelyabinsk, Vorovskogo st., 64; 454087, Chelyabinsk, Blyukhera st., 42a
A. V. Grunin
Russian Federation
Alexandr V. Grunin.
454092, Chelyabinsk, Vorovskogo st., 64; 454087, Chelyabinsk, Blyukhera st., 42a
P. G. Baboshko
Russian Federation
Pavel G. Baboshko.
454087, Chelyabinsk, Blyukhera st., 42a
E. F. Agletdinov
Russian Federation
Eduard F. Agletdinov - doctor of medical sciences.
630117, Novosibirsk, Pasechnaya st., 3
References
1. Moorthie S., Blencowe H., Darlison M.W., Lawn J., Morris J., Modell B., Congenital Disorders Expert Group, Bittles A., Blencowe H., Christianson A., … Yunnis K.A. Estimating the birth prevalence and pregnancy outcomes of congenital malformations world-wide. J. Community Genet. 2018;9(4):387–396. doi: 10.1007/s12687-018-0384-2
2. Simakhodsky A.S., Gorelik Yu.V., Gorelik K.D., Ivanov S.L., Lukashova Yu.V. Mortality of children born on early gestational age: is it the impassable barrier or the reserve for reducing the infants mortality? Voprosy sovremennoy pediatrii = Current Pediatrics. 2020;19(5):340–345. [In Russian]. doi 10.15690/vsp.v19i5.2209
3. Morozov D.A., Pimenova E.S., Goremykin I.V., Filippov Yu.V., Gorodkov S.Yu., Antonov M.A., Deryugina L.A., Sviridov N.N., Chukhrova N.S. Organization of neonatal surgical care as exemplified by a regional model. Detskaya khirurgiya = Pediatric Surgery. 2015;19(4):36–41. [In Russian].
4. Tipton K.F. 90 years of monoamine oxidase: some progress and some confusion. J. Neural. Transm. (Vienna). 2018;125(11):1519–1551. doi: 10.1007/s00702-018-1881-5
5. Ma S.R., Yu J.B., Fu J., Pan L.B., Yu H., Han P., Zhang Z., Peng R., Xu H., Wang Y. Determination and application of nineteen monoamines in the gut microbiota targeting phenylalanine, tryptophan, and glutamic acid metabolic pathways. Molecules. 2021;26(5):1377. doi: 10.3390/molecules26051377
6. Liu C.Z., Zhang X.L., Zhou L., Wang T., Quan Z.S., Zhang Y., Li J., Li G.W., Zheng L.F., Li L.S.,. Zhu J.X. Rasagiline, an inhibitor of MAO‐B, decreases colonic motility through elevating colonic dopamine content. Neurogastroenterol. Motil. 2018;30(11):e13390. doi: 10.1111/nmo.13390
7. Wegler C., Wiśniewski J.R., Robertsen I., Christensen H., Kristoffer Hertel J., Hjelmesæth J., Jansson-Löfmark R., Åsberg A., Andersson T. B., Artursson P. Drug disposition protein quantification in matched human jejunum and liver from donors with obesity. Clin. Pharmacol. Ther. 2022;111(5):1142–1154. doi: 10.1002/cpt.2558
8. Tra M. Novel monoamine oxidase B inhibitor downregulation of lipopolysaccharide-induced pro-inflammatory cytokines: abstract of thesis of dissertation. Vancouver; 2015. doi: 10.14288/1.0166397
9. Putnins E.E., Goebeler V., Ostadkarampour M. Monoamine oxidase-B inhibitor reduction in pro-inflammatory cytokines mediated by inhibition of cAMP-PKA/EPAC signaling. Front. Pharmacol. 2021;12:741460. doi: 10.3389/fphar.2021.741460
10. Ye D., Xu H., Xia H., Zhang C., Tang Q., Bi F. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. J. Exp. Clin. Cancer Res. 2021;40(1):73. doi: 10.1186/s13046-021-01971-1
11. Yang Y.C., Chien M.H., Lai T.C., Su C.Y., Jan Y.H., Hsiao M., Chen C.L. Monoamine oxidase B expression correlates with a poor prognosis in colorectal cancer patients and is significantly associated with epithelial-to-mesenchymal transition-related gene signatures. Int. J. Mol. Sci. 2020;21(8):2813. doi: 10.3390/ijms21082813
12. Ostadkarampour M., Putnins E.E. Monoamine oxidase inhibitors: a review of their anti-inflammatory therapeutic potential and mechanisms of action. Front. Pharmacol. 2021;12:676239. doi: 10.3389/fphar.2021.676239
13. Challacombe D.N., Sandler M., Southgate J. Decreased duodenal monoamine oxidase activity in coeliac disease. Arch. Dis. Child. 1971;46(246):213–215. doi: 10.1136/adc.46.246.213
14. Niemi M., Kouvalainen K., Hjelt L. Cholinesterases and monoamine oxidase in congenital megacolon. J. Pathol. Bacteriol. 1961;82:363–366. doi: 10.1002/path.1700820214
15. Vinel P.K., Grobovoy S.I., Sinitskii A.I., Kolesnikov O.L. Modification of a spectrophotometric method for assessment of monoamine oxidase activity with 2,4-dinitrophenylhydrazine as a derivatizing reagent. Anal. Biochem. 2021;629:114294. doi: 10.1016/j.ab.2021.114294
16. Spiro H.M., Filipe M.I., Stewart J.S., Booth C.C., Pearse А. Functional histochemistry of the small bowel mucosa in malabsorptive syndromes. Gut. 1964;5(2):145–154. doi: 10.1136/gut.5.2.145
17. Gershon M.D., Sherman D.L., Pintar J.E. Type‐specific localization of monoamine oxidase in the enteric nervous system: Relationship to 5‐hydroxytryptamine, neuropeptides, and sympathetic nerves. J. Comp. Neurol. 1990;301(2):191–213. doi: 10.1002/cne.903010205
18. Kast R.E. Crohn’s disease remission with phenelzine treatment. Gastroenterology. 1998;115(4):1034–1035. doi: 10.1016/s0016-5085(98)70292-6
19. Sánchez-Rodríguez R., Munari F., Angioni R., Venegas F., Agnellini A., Castro-Gil M.P., Castegna A., Luisetto R., Viola A., Canton M. Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cell. Mol. Immunol. 2020;18(5):1311–1313. doi: 10.1038/s41423-020-0441-8
20. Ostadkarampour M., Putnins E. Monoamine oxidase inhibitors: a review of their anti-inflammatory therapeutic potential and mechanisms of action. Front. Pharmacol. 2021;12:676239. doi: 10.3389/fphar.2021.676239
Review
For citations:
Vinel P.K., Sinitskii A.I., Tsareva V.V., Grunin A.V., Baboshko P.G., Agletdinov E.F. Intestinal monoamine oxidase activity in premature and full-term infants with surgical pathology. Сибирский научный медицинский журнал. 2024;44(6):197-202. (In Russ.) https://doi.org/10.18699/SSMJ20240620