Evaluation of lithium chloride safety and toxicokinetics for injection in minipigs
https://doi.org/10.18699/SSMJ20240611
Abstract
Lithium salts are known to treat bipolar disorder. Their high potential as neuroprotective agents in cerebral ischemia determines relevance for preclinical studies for the registration of new drugs based on them. Aim of the study was to investigate the toxic properties and local tolerability with an assessment of the toxicokinetics of the developed lithium chloride preparation for injection in dwarf pigs with repeated intravenous administration. Material and methods. Lithium chloride (solution, for intravenous administration 4.2 %) has been administered to minipigs (control and 3 experimental groups of animals of 3 males and 3 females) for 28 days at doses of 12.6; 29.4 and 63 mg/kg. General toxicity, local irritation, and basic pharmacokinetic parameters (Cmax, AUC0-24, MRT, T1/2, Vss, and Cl) were evaluated. Serum lithium ion concentration was estimated colorimetrically using quinizarin. Results and discussion. Toxic properties of the test drug were revealed, expressed in a change in the clinical state (vomiting after administration, inhibition of behavior and feed refusal), body weight negative dynamics, clinical and laboratory changes, shortening of the “QT” interval, accompanied by abnormalities according to the pathomorphological study results (focal infiltration with single renal tubular necrosis areas, kidneys fibrosis, replacement of thyroid tissue with adipose tissue). There were no signs of locally irritating effects of the test product. To evaluate toxicokinetic parameters, a bioanalytical assay (calibration range – from 0.17 to 5.45 μg/mL) was developed and validated, which is not inferior by its characteristics to the commercial reagent kits. According to the results of biomaterial analysis no lithium accumulation in the pig’s body was found with repeated use of the test drug. Doses of the drug that provide toxic concentrations of lithium (above 3 μg/ml) in the minipig’s serum were identified. The NOAEL was 12.6 mg/kg and the LOAEL was 29.4 mg/kg. Conclusions. The comprehensive approach to the consideration of toxic manifestations and toxicokinetics, including its analytical component of studies of this kind, was noted. The obtained results should be taken into account to assess the benefit/risk ratio in the clinical use of lithium chloride injection.
Keywords
About the Authors
V. M. KosmanRussian Federation
Vera M. Kosman - candidate of pharmalogical sciences.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
A. Yu. Romanenko
Russian Federation
Anna Yu. Romanenko.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
M. V. Karlina
Russian Federation
Marina V. Karlina - candidate of biological sciences.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
N. M. Faustova
Russian Federation
Natalya M. Faustova - candidate of chemical sciences.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
E. V. Mazukina
Russian Federation
Elizaveta V. Mazukina.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
A. N. Kuzovlev
Russian Federation
Artem N. Kuzovlev - doctor of medical sciences.
141534, Moscow region, Solnechnogorsk, Lytkino vlg., 777
A. V. Grechko
Russian Federation
Andrey V. Grechko - doctor of medical sciences, corresponding member of RAS.
141534, Moscow region, Solnechnogorsk, Lytkino vlg., 777
R. A. Cherpakov
Russian Federation
Rostislav A. Cherpakov - candidate of medical sciences.
141534, Moscow region, Solnechnogorsk, Lytkino vlg., 777; 129090, Moscow, Bolshaya Sukharevskaya sq., 3
M. N. Makarova
Russian Federation
Marina N. Makarova - doctor of medical sciences.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
V. G. Makarov
Russian Federation
Valery G. Makarov - doctor of medical sciences, professor.
188663, Leningrad region, Vsevolozhsky district, Kuzmolovsky urban-type settlement, Zavodskaya st., 3/245
References
1. Korolev M.A., Konenkov V.I., Rachkovskaya L.N., Ershov K.I., Baykalov G.I., Baykalova N.E., Bakhareva K.I., Madonov P.G. Studying the pharmacokinetic parameters of new normothymic drug based on the complex of lithium citrate, aluminum oxide and polymethylsiloxane. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2019;39(6):14–21. [In Russian]. doi: 10.15372/SSMJ20190602
2. Korolev M.A., Rachkovskaya L.N., Madonov P.G., Shurlyginа A.V., Rachkovsky E.E., Letyagin A.Yu., Konenkov V.I., Churin A.A., Dubskaya T.Yu., Vetoshkina T.V., Sandrikina L.A., Fomina T.I., Fedorova E.P. Estimation of acute toxicity of a drug based on the complex of lithium citrate, polymethylsiloxane, aluminum oxide. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2020;40(5):46–52. [In Russian]. doi: 10.15372/SSMJ20200505
3. Shilov G.N., Shabanov P.D., Shadyro O.I. Cognitive and antihypoxic components in the nootropic effect of the li-solts of the main inhibitor amino acids in comparing with antihypoxants with pyrocatechol structure. Meditsinskie novosti = Medical News. 2017;(3):58–61. [In Russian].
4. Arkhipov V.I., Kapralova M.V., Pershina E.V. Excitotoxicity and experimental approaches to neuroprotection. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2013;(5):486. [In Russian].
5. Belenichev I.F., Cherniy V.I., Nagornaya E.A., Pavlov S.V., Cherniy T.V., Gorchakova N.A., Bukhtiyarova N.V., Andronova I.A., Kucherenko L.I. Neuroprotection and neuroplasticity. Kiev: Polygraph Plus, 2014. 512 p. [In Russian].
6. Losenkov I.S., Plotnikov E.V., Epimakhova E.V., Bokhan N.A. Lithium in the psychopharmacology of affective disorders and mechanisms of its effects on cellular physiology. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):108–115. [In Russian]. doi: 10.17116/jnevro2020120111108
7. Gogoleva I.V., Gromova O.A., Torshin I.Yu., Grishina T.R., Pronin A.V. A systematic analysis of neurobiological roles of lithium. Zhurnal nevrologii i psikhiatrii imeni Sergeya Sergeevicha Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(11):17–23. [In Russian]. doi: 10.17116/jnevro202212211117
8. Moroz V.V., Silachev D.N., Plotnikov E.Yu., Zorova L.D., Pevzner I.B., Grebenchikov O.A., Likhvantsev V.V. Mechanisms of cell damage and protection in ischemia/reperfusion and experimental rationale for the use of lithium-based preparations in anesthesiology. Obshchaya reanimatologiya = General Reanimatology. 2013;9(1):63. [In Russian]. doi: 10.15360/1813-9779-2013-1-63
9. Pronin A.V., Gromova O.A., Torshin I.Yu., Stelmashuk E.V., Aleksandrova O.P., Genrikhs E.E., Khaspekov L.G. Neuroprotective properties of lithium salts during glutamate-induced stress. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(3):111–119. [In Russian]. doi:10.14412/2074-2711-2017-3-111-119
10. Cherpakov R.A., Grebenchikov O.A. Effect of lithium chloride concentration on its neuroprotective properties in ischemic stroke in rats. Obshchaya reanimatologiya = General Reanimatology. 2021;17(5):101–110. [In Russian]. doi: 10.15360/1813-9779-2021-5-101-110
11. Plotnikov E.Yu., Zorov D.B., Zorova L.D., Pevzner I.B., Grebenchikov O.A., Lihvantsev V.V., Silachev D.N., Moroz V.V. Treatment of cerebral edema of ischemic, traumatic, toxic and infectious genesis using hypertonic solution of lithium salts. Pat. 021560B1 EA. Publ. 30.07.2015.
12. Grebenchikov O.A., Lobanov A.V., Shayhutdinova E.R., Kuzovlev A.N., Ershov A.V., Likhvantsev V.V. Cardioprotective effect of lithium chloride on a rat model of myocardial infarction. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2019;23(2):43–49. [In Russian]. doi: 10.21688/1681-3472-2019-2-43-49
13. Grebenchikov O.A., Cherpakov R.A., Evseev A.K., Ershov A.V., Kuzovlev A.N., Lonchinsky P.A., Petrikov S.S., Shabanov A.K. Lithium chloride effect on mortality and neurological deficits in the model of ischemic stroke in rats. Neotlozhnaya meditsinskaya pomoshch’ = Emergency Medical Care. 2021;10(4):676-686. [In Russian]. doi:10.23934/2223-9022-2021-10-4-676-686
14. Grebenchikov O.A., Kuzovlev A.N., Baeva A.A. Lithium chloride for the novel coronavirus infection COVID-19. Anesteziologiya i reanimatologiya = Russian Journal of Anaesthesiology and Reanimatology. 2020;(6-2):40-44. [In Russian]. doi: 10.17116/anaesthesiology202006240
15. Raghavendra P.B., Lee E., Parameswaran N. Regulation of macrophage biology by lithium: a new look at an old drug. J. Neuroimmune Pharmacol.2014;9(3):277–284. doi: 10.1007/s11481-013-9516-y
16. Doeppner T.R., Kaltwasser B., Sanchez-Mendoza E.H., Caglayan A.B., Bähr M., Hermann D.M. Lithium-inducedneuroprotectioninstrokeinvolvesincreased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. J. Cereb. Blood Flow Metab.2017;37(3):914–926. doi: 10.1177/0271678X16647738
17. Taliyan R., Ramagiri S. Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3β. J. Recept. Signal Transduct. Res.2016;36(4):402–410. doi: 10.3109/10799893.2015.1108338
18. Kuzovlev A.N., Grebenchikov O.A., Meshkov M.A., Dolgikh V.T., Prokofiev M.D., Shpichko N.P., Ershov A.V. Influence of lithium chloride on the apoptosis of endotheliocytes in systemic inflammatory response syndrome in patients with severe multiple injury. A retrospective study. Vestnik intensivnoy terapii = Bulletin of Intensive Care. 2020;(3):115–121. [In Russian]. doi: 10.21320/1818-474X-2020-3-115-121
19. Grebenchikov O.A., Dolgikh V.T., Prokofiev M.D., Kasatkina I.S., Ershov A.V. Protective effect of lithium chloride on endothelial cells in septic shock. Obshchaya reanimatologiya = General Reanimatology. 2020;16(3):94–105. [In Russian and English]. doi: 10.15360/1813-9779-2020-3-94-105
20. Cherpakov R.A., Kuzovlev A.N., Makarevich D.G., Lobanov A.V., Ershov A.V., Grebenchikov O.A. Effect of different concentrations of lithium chloride on p-GSK-3β content in a model of ischemic stroke. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological Physiology and Experimental Therapy. 2021;65(4):26–33. [In Russian]. doi: 10.25557/0031-2991.2021.04.26-33
21. Grebenchikov O.A., Kasatkina I.S., Kadantseva K.K., Meshkov M.A., Baeva A.A. The effect of lithium chloride on neutrophil activation on exposure to serum of patients with septic shock. Obshchaya reanimatologiya = General Reanimatology. 2020;16(5):45–55. [In Russian and English]. doi: 10.15360/1813-9779-2020-5-45-55
22. Grebenchikov O.A., Kasatkina I.S., Kuzovlev A.N., Lobanov A.V., Ershov A.V. Influence of lithium chloride on neutrophil activation in the development of systemic inflammatory response syndrome in patients after on-pump cardiac surgery. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological Physiology and Experimental Therapy. 2020;64(4):47–53. [In Russian]. doi: 10.25557/0031-2991.2020.04.47-53
23. Mazukina E.V., Shekunova E.V., Kosman V.M., Urakova I.N., Kotelnikova I.G., Fonarev M.Yu., Ezhova E.A., Zakalyukina E.V., Makarova M.N., Makarov V.G. Preclinical study of the efficacy and safety of chondroitin sulfate. Bezopasnost’i risk farmakoterapii = Safety and Risk of Drug Therapy. 2021;9(1):43–57. [In Russian]. doi:/10.30895/2312-7821-2021-9-1-43-57
24. Vavilova V.A., Shekunova E.V., Jain E.A., Balabanyan V.Yu., Ozerov A.A., Makarova M.N., Makarov V.G. Experimental study of toxic properties of VMU-2012-05 drug – original non-nucleeeside inhibitor of HIV-1 reverse transcriptase. Farmatsiya i farmakologiya = Pharmacy and Pharmacology. 2021;9(3):205-221. [In Russian]. doi:10.19163/2307-9266-2021-9-3-205-221
25. Kosman V.M., Karlina M.V., Mazukina E.V., Globenko A.A., Jain E.A., Makarova M.N., Makarov V.G. Preclinical evaluation of esomeprazole safety and toxicokinetics. Bezopasnost’ i risk farmakoterapii = Safety and Risk of Drug Therapy. 2023;11(2):176–190. [In Russian]. doi:10.30895/2312-7821-2023-11-2-342
26. Zhang Y., Huo M., Zhou J., Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010;99(3):306–314. doi: 10.1016/j.cmpb.2010.01.007
27. Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques. Eds.: M.M. Swindle, A.C. Smith. Boca Raton: CRC press, 2007. 496 р.
28. Sheikh M., Qassem M., Triantis I.F., Kyriacou P.A. Advances in therapeutic monitoring of lithium in the management of bipolar disorder. Sensors (Basel). 2022;22(3):736. doi: 10.3390/s22030736
29. Nederlof M., Heerdink E.R., Egberts A.C.G., Wilting I., Stoker L.J., Hoekstra R., Kupka R.W. Monitoring of patients treated with lithium for bipolar disorder: an international survey. Int. J. Bipolar Disord. 2018;6(1):12. doi: 10.1186/s40345-018-0120-1
30. Iwabuchi E., Odashima Ts. Lithium reagent composition, and method and device for determining lithium ion amount using same. Pat. JP2012087928A/ RU2014144680. Publ. 20.12.2015.
31. Qassem M., Hickey M., Kyriacou P.A. Colorimetric determinations of lithium levels in drop-volumes of human plasma for monitoring patients with bipolar mood disorder. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016;2016:5160–5163. doi: 10.1109/EMBC.2016.7591889
32. Kim J.H., Diamond D., Lau K.T. Development of portable device for monitoring the lithium level from bipolar disorder patients. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops: proc. conf., 23–26 May 2011. Dublin, 2011. P. 230–233.
33. Gracia L.G., Rodríguez L.C., Ceba M.R. Spectrophotometric determination of lithium with quinizarin in drugs and serum. Talanta. 1997;44(1):75–83. doi: 10.1016/s0039-9140(96)02018-8
34. Karlina M.V., Kosman V.M., Abramovich R.A., Archakova O.A., Barybina T.N., Vlasenko Yu.V., Guzevatykh L.S., Kovaleva E.L., Korel A.V., Koshchits D.V., … Tulegenova A.U. Risk-oriented approach to drug development. In: GLP-Planet Consultant 2023. Opinion of the pharmaceutical industry. Saint-Petersburg: Dom Farmacii, 2023; 47–74 [In Russian].
35. Guidance for Industry: Bioanalytical method for validation. Rockville, MD, U.S. Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Center for veterinary medicine 2018:41.
36. Guideline on bioanalytical method validation. EMEA/CHMP/EWP192217/2009. London: Committee for medicinal products for human use (CHMP), 2011. P. 22.
37. Decision of the EEU Council No. 85 of November 3, 2016 “On approval of the Rules for conducting bioequivalence studies of medicinal products within the framework of the Eurasian Economic Union”. Appendix No. 6 “Requirements for the validation of bioanalytical test methods and analysis of biological samples under study”. 2016. Available at: https://www.alta.ru/tamdoc/16sr0085/ [In Russian].
38. Bochkareva I.I., Dyakova I.N. The role of biogenic elements in the human body and their use in medicine and pharmacy. Textbook for students of the pharmaceutical faculty. Maykop: Kachestvo, 2016. 127 p. [In Russian].
39. GOST R ISO 7870-2-2015. Statistical methods. Control cards. Shewhart control charts. 2015. 46 p. [In Russian].
40. Jakobsson E., Argüello-Miranda O., Chiu S.W., Fazal Z., Kruczek J., Nunez-Corrales S., Pandit S., Pritchet L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol. 2017;250(6):587–604. doi: 10.1007/s00232-017-9998-2
41. Fairbrother F., Petzl N., Scott J., Kisely S. Lithium can cause hyperthyroidism as well as hypothyroidism: A systematic review of an under-recognised association. Aust. N. Z. J. Psychiatry. 2019;53(5):384–402. doi: 10.1177/0004867419833171
42. Wen J., Sawmiller D., Wheeldon B., Tan J. A review for lithium: pharmacokinetics, drug design, and toxicity. CNS Neurol. Disord. Drug Targets. 2019;18(10):769–778. doi: 10.2174/1871527318666191114095249
43. Couffignal C., Chevillard L., El Balkhi S., Cisternino S., Declèves X. The pharmacokinetics of lithium. In book: The Science and Practice of Lithium Therapy. Springer, Cham, 2017; 25–53. doi: 10.1007/978-3-319-45923-3_2
44. McGlone J.J., Kelley K.W., Gaskins C.T. Lithium and porcine aggression. J. Anim. Sci. 1980;51(2):447–455. doi: 10.2527/jas1980.512447x
45. Mormede P., Dantzer R. Pharmacokinetics of lithium in pigs. Journal of Veterinary Pharmacology and Therapeutics.1978;1:309–312. doi: 10.1111/j.1365-2885.1978.tb00344.x
Review
For citations:
Kosman V.M., Romanenko A.Yu., Karlina M.V., Faustova N.M., Mazukina E.V., Kuzovlev A.N., Grechko A.V., Cherpakov R.A., Makarova M.N., Makarov V.G. Evaluation of lithium chloride safety and toxicokinetics for injection in minipigs. Сибирский научный медицинский журнал. 2024;44(6):114-127. (In Russ.) https://doi.org/10.18699/SSMJ20240611