The level of apoptosis in the cells of the neocortex and hippocampus of white rats after mild traumatic brain injury with the introduction of glyproline
https://doi.org/10.18699/SSMJ20240618
Abstract
Glyprolines have a wide range of pharmacological effects, including antioxidant effects. This can be used to correct functional and morphological disorders of the brain after traumatic brain injury (TBI) by inhibiting secondary damage, the prevention of which is the main way to improve TBI outcomes. The aim of the study was to investigate the level of apoptosis in the cells of the proper parietal lobe (PPL) and the CA1 field of the hippocampus of mature male Wistar rats after mild TBI and a course of glyproline RPGP (Arg-Pro-Gly-Pro). Material and methods. Rat brain tissues (n = 38) were used in the experiment. Mild TBI was modeled by free fall of a load. After the injury, the animals received intraperitoneal RPGP peptide at a dose of 0.1 mg/kg, dissolved in 0.9% NaCl solution or NaCl solution. The level of apoptosis in brain tissues was assessed by the expression of p53 antigen using immunohistochemistry. Results. On the 22st day after TBI, the number of glial cells that entered into apoptosis in layer II of the proper parietal lobe (PPL) of the Wistar rat brain increases. In animals subjected to simulated TBI and receiving RPGP intraperitoneally at a dose of 0.1 mg/kg for 21 days, the level of apoptosis did not increase. Conclusion. It was found that after a course of RPGP administration against the background of TBI, the level of apoptosis in neuroglial cells decreases.
About the Authors
M. Yu. FleishmanRussian Federation
Marina Yu. Fleishman - doctor of medical sciences.
680000, Khabarovsk, Murav’yeva-Amurskogo st., 35
A. A. Salnikov
Russian Federation
Anton A. Salnikov.
680000, Khabarovsk, Murav’yeva-Amurskogo st., 35
A. A. Kolesnikova
Russian Federation
Anna A. Kolesnikova.
680000, Khabarovsk, Murav’yeva-Amurskogo st., 35
Yu. B. Malofey
Russian Federation
Yliya B. Malofey - candidate of biological sciences.
680000, Khabarovsk, Murav’yeva-Amurskogo st., 35
References
1. Khavinson V.Kh. Peptide medicines: past, present, future. Klinicheskaya meditsina = Clinical Medicine. 2020;98(3):165–177. [In Russian]. doi: 10.30629/0023-2149-2020-98-3-165-177
2. Zhuikova S.E. Physiological effects of Semax, a synthetic analogue of ACTH4–10: Experience and prospects for applications. Integrativnaya fiziologiya = Integrative Physiology. 2022;3(2):204–220. [In Russian]. doi: 10.33910/2687-1270-2022-3-2-204-220
3. Shi Y., Liu L., Yu Y., Long Y., Zheng H. Acidic amino acids: A new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behavior. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2018;(201):367–375. doi: 10.1016/j.saa.2018.05.024
4. Tsibizova A.A., Sergalieva M.U., Samotrueva M.A.Assessment of the antioxidant activity of glyprolins in experimental hyperthyroidism. Uchenye zapiski Krymskogo federal’nogo universiteta imeni Vladimira Ivanovicha Vernadskogo. Biologiya. Khimiya = Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2023;9(2):219–228. [In Russian]. doi: 10.29039/2413-1725-2023-9-2-219-228
5. Zakirova E.G., Zainullina L.F., Vakhitova Yu.V. Neuroprotective properties of the peptide Arg-Pro-Gly-Pro. Innovatsii v nauke. = Innovation in Science. 2017;7(1):4–7. [In Russian].
6. Kulinich T.M., Ivanov A.V., Zakharenko M.V., Dzhikiya E.L., Shishkin A.M., Bozhenko V.K. Cell-penetrating peptides (CPPs) and their therapeutic application. Vestnik Rossiyskogo nauchnogo tsentra rentgenoradiologii = Bulletin of the Russian Scientific Center of Roentgenology. 2020;(4):106–126. [In Russian].
7. Sazonova E.N., Samarina E.Yu., Ilinykh A.V., Sazonov O.A. Implementation of the method of acidic erythrograms to reveal the membranotropic effect of biologically active peptides. Dal’nevostochnyy meditsinskiy zhurnal = Far East Medical Journal. 2020;(4):64–68. [In Russian]. doi: 10.35177/1994-5191-2020-4-65-69
8. de Martini L.B., Sulmona C., Brambilla L., Rossi D. Cell-penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs. Cells. 2023;12(12):1643. doi: 10.3390/cells12121643
9. Grigoryeva M.E., Lyapina L.A. Role of glyproline peptides in the regulationof haemostasis system under stress conditions. Uspekhi sovremennoy biologii = Biology Bulletin Reviews. 2020;140(1):19–25. [In Russian]. doi: 10.31857/S0042132420010020
10. Biloshitskiy V.V. The principles of experimental traumatic brain injury modelling. Ukrayinsʹkiy neyrokhirurhichniy zhurnal = Ukrainian Neurosurgical Journal. 2008(4):9–15. [In Russian].
11. Barvina A.R. Modern rules for the use of parametric and nonparametric tools in the statistical analysis of biomedical data. Meditsinskiy al’manakh = Medical Almanac. 2021;(1):64–73. [In Russian].
12. Semenenko A.I. Assessment of the therapeutic effect of 0.9% NaCl on indicators of cerebral hemodynamics in ischemia-reperfusion of rat brain. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta = Journal of the Grodno State Medical University. 2014;(3):49–52. [In Russian].
13. Fleishman M.Yu., Tolstenok I.V., Innokentyev A.A. Effects of peptide Selank on oxidative stress in the brain and thin intestine of white rats on experimental model of traumatic brain injury. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2019;39(2):46–51. [In Russian]. doi: 10.15372/SSMJ20190205
14. Solovieva A.G., Kuznetsova V.L., Peretyagin S.P., Didenko N.V., Dudar A.I. Role of nitric oxide in processes of free radical oxidation. Vestnik Rossiyskoy voyenno-meditsinskoy akademii = Bulletin of the Russian Military Medical Academy. 2016;(1):228–233. [In Russian].
15. Suschek C.V., Schnorrn O., Hemmrich K., Aust O., Klotz L.O., Sies H., Kolb-Bachofen V. Critical role of L-arginine in endothelial cell survival during oxidative stress. Circulation. 2003;107(20):2607–2614. doi: 10.1161/01.CIR.0000066909.13953.F1
16. Grovola M.R., Jinich A., Paleologos N., Arroyo E.J., Browne K.D., Swanson R.L., Duda J.E., Cullen D.K. Persistence of hyper-ramified microglia in porcine cortical gray matter after mild traumatic brain injury. Biomedicines. 2023;11(7):1960. doi: 10.3390/biomedicines11071960
17. George K.K., Heithoff B.P., Shandra O., Robel S. Mild traumatic brain injury/concussion initiates an atypical astrocyte response caused by blood-brain barrier dysfunction. J. Neurotrauma. 2022;39(1-2):211–226. doi: 10.1089/neu.2021.0204
18. Zhao Q., Zhang J., Li H., Li H, Xie F. Models of traumatic brain injury-highlights and drawbacks. Front. Neurol. 2023;(14):1151660. doi: 10.3389/fneur.2023.1151660