Bronchial asthma in the era of personalized medicine
https://doi.org/10.18699/SSMJ20240604
Abstract
Bronchial asthma is a growing burden on the health system worldwide, mainly affecting population of low-income countries. The widespread growth of morbidity has a significant negative impact on the quality of life of patients. The lack of radical treatment of asthma for many years can be explained by a lack of understanding of the mechanisms of its development. Currently, the heterogeneity of bronchial asthma is recognized, which is reflected in numerous risk factors. Advances in various aspects of the pathogenesis of this complex disease contribute to the development of new and more effective therapeutic approaches. Understanding the phenotyping and endotyping of asthma is an important aspect on which the effectiveness of a particular biological drug depends. Timely diagnosis and well-chosen therapy prevent the progression of the disease and allow achieving a long-term remission of bronchial asthma. The long-term history of studying the disease etiopathogenesis has brought progressive changes in the effectiveness of its treatment. The purpose of this work is to review the phenotypic features of bronchial asthma, as well as individualized treatment methods for severe asthma, prognostic and monitoring biomarkers of biological drugs. The search was conducted using PubMed, and EMBASE databases. The following keywords were used: “bronchial asthma”, “asthma phenotypes”, “asthma endotypes”, “asthma biomarkers”.
About the Authors
A. Kh. IbishevaRussian Federation
Aset Kh. Ibisheva.
364059, Grozny, I.I. Bisultanova st., 101
M. R. Shakhgireeva
Russian Federation
Madina R. Shakhgireeva - candidate of medical sciences.
364059, Grozny, I.I. Bisultanova st., 101
A. B. Khildikharoeva
Russian Federation
Asya B. Khildikharoeva.
364059, Grozny, I.I. Bisultanova st., 101
L. S. Uspanova
Russian Federation
Linda S. Uspanova.
364059, Grozny, I.I. Bisultanova st., 101
S. A. Shamsadova
Russian Federation
Saikhat A. Shamsadova.
364059, Grozny, I.I. Bisultanova st., 101
L. V.-M. Dzhabrailova
Russian Federation
Linda V.-M. Dzhabrailova.
364059, Grozny, I.I. Bisultanova st., 101
References
1. Popović-Grle S., Štajduhar A., Lampalo M., Rnjak D. Biomarkers in different asthma phenotypes. Genes (Basel). 2021;12(6):801. doi: 10.3390/genes12060801
2. Dharmage S.C., Perret J.L., Custovic A. Epidemiology of asthma in children and adults. Front. Pediatr. 2019;7:246. doi: 10.3389/fped.2019.00246
3. Krčmová I. Evolution o fourview on the IgE moleculerolein bronchial asthma and the clinical effectofits modulation by omalizumab: Where do we stand today? Int. J. Immunopathol. Pharmacol. 2020;34:2058738420942386. doi: 10.1177/2058738420942386
4. Song X.L., Liang J., Lin S.Z., Xie Y.W., Ke C.H., Ao D., Lu J., Chen X.M., He Y.Z., Liu X.H., Li W. Gutlung axis and asthma: A historical review on mechanism and future perspective. Clin. Transl. Allergy. 2024;14(5):e12356. doi: 10.1002/clt2.12356
5. Samitas K., Delimpoura V., Zervas E., Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur. Respir. Rev. 2015;24(138):594–601. doi: 10.1183/16000617.00001715
6. Knyazheskaya N.P., Anaev E.H., Kameneva A.A., Safoshkina E.V., Kirichenko N.D. Targeted therapy in bronchial asthma. Benralizumab: focus on patients using systemic glucocorticosteroids. Meditsinskiy sovet = Medical Council. 2020;(17):9–16. [In Russian]. doi: 10.21518/2079-701X-2020-17-9-16
7. Clinical recommendations. Bronchial asthma. Мoscow, 2021. 114 p. Available at: https://raaci.ru/dat/pdf/BA.pdf
8. Avdeev S.N., Nenasheva N.M., Zhudenkov K.V., Petrakovskaya V.A., Izyumova G.V. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in the Russian Federation. Pul’monologiya = Pulmonology. 2018;28(3):341–358. [In Russian]. doi: 10.18093/0869-0189-2018-28-3-341-358
9. Akar-Ghibril N., Casale T., Custovic A., Phipatanakul W. Allergic endotypes and phenotypes of asthma. J. Allergy Clin. Immunol. Pract. 2020;8(2):429–440. doi: 10.1016/j.jaip.2019.11.008
10. Ricciardolo F., Guida G., Bertolini F., di Stefano A., Carriero V. Phenotype overlap in the natural history of asthma. Eur. Respir. Rev. 2023;32(168):220201. doi: 10.1183/16000617.0201-2022
11. Bakakos P. Asthma: from phenotypes to personalized medicine. J. Pers. Med. 2022;2(11):1853. doi: 10.3390/jpm12111853
12. Kim H., Ellis A., Fischer D., Noseworthy M., Olivenstein R., Chapman K.R., Lee J. Asthma biomarkers in the age of biologics. Allergy Asthma Clin. Immunol. 2017;13:48. doi: 10.1186/s13223-017-0219-4
13. Rastogi D. Pediatric obesity-related asthma: A prototype of pediatric severe non-T2 asthma. Pediatr. Pulmonol. 2020;55(3):809–817. doi: 10.1002/ppul.24600
14. Lugogo N., Kraft M., Dixon A. Does obesity produce a distinct asthma phenotype? J. Appl. Physiol. 2010;108(3):729–734. doi: 10.1152/japplphysiol.00845.2009
15. Beuther D.A., Sutherland E.R. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007;175(7):661–666. doi: 10.1164/rccm.200611-1717OC
16. Fainardi V., Passadore L., Labate M., Pisi G., Esposito S. An overview of the obese-asthma phenotype in children. Int. J. Environ Res. Public Health. 2022;19(2):636. doi: 10.3390/ijerph19020636
17. Hanania N.A., Fortis S., Haselkorn T., Gupta S., Mumneh N., Yoo B., Holweg C.J., Chipps B.E. Omalizumab in asthma with fixed airway obstruction: post hoc analysis of EXTRA. J. Allergy Clin. Immunol. Pract. 2022;10(1):222–228. doi: 10.1016/j.jaip.2021.08.006
18. Bakakos A., Vogli S., Dimakou K., Hillas G. Asthma with fixed airflow obstruction: from fixed to personalized approach. J. Pers. Med. 2022;12(3):333. doi: 10.3390/jpm12030333
19. Kurbacheva O.M. Phenotypes and endotypes of bronchial asthma: from pathogenesis and clinical features to therapy. Rossiyskiy allergologicheskiy zhurnal = Russian Journal of Allergy. 2013(1):18–24. [In Russian].
20. Nenasheva N.M. T2-asthma, endotype characteristics and biomarkers. Pul’monologiya = Pulmonology. 2019;29(2):216–228. [In Russian]. doi: 10.18093/0869-0189-2019-29-2-216-228
21. Avdeev S.N., Volkova O.A., Demko I.V., Ignatova G.L., Leshchenko I.V., Kanukova N.A., Kudelya L.M., Nevzorova V.A., Nedashkovskaya N.G., Ukhanova O.P., Shulzhenko L.V., Fassakhov R.S. Severe bronchial asthma patient care organization in various regions of the Russian Federation. From endotypes and phenotypes of bronchial asthma to personalized choice of therapy. Terapevticheskiy arkhiv = Therapeutic Archive. 2020;92(2):119–123. [In Russian]. doi: 10.26442/00403660.2020.02.000555
22. Galeone С., Scelfo С., Bertolini F., Caminati M., Ruggiero P., Facciolongo N., Menzella F. Precision medicine in targeted therapies for severe asthma: is there any place for “Omics” technology? Biomed. Res. Int. 2018;2018:4617565. doi: 10.1155/2018/4617565
23. Habib N., Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers. Cells. 2022;11(17):2764. doi: 10.3390/cells11172764
24. Kuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 2019;56(2):219–233. doi: 10.1007/s12016-018-8712-1
25. Hastie A.T., Moore W.C., Li H., Rector B.M., Ortega V.E., Pascual R.M., Peters S.P., Meyers D.A., Bleecker E.R., National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J. Allergy Clin. Immunol. 2013;132(1):72–80. doi: 10.1016/j.jaci.2013.03.044
26. Fitzpatrick A.M., Jackson D.J., Mauger D.T., Boehmer S.J., Phipatanakul W., Sheehan W.J., Moy J.N., Paul I.M., Bacharier L.B., Cabana M.D., … NIH/ NHLBI AsthmaNet. Individualized therapy for persistent asthma in young children. J. Allergy Clin. Immunol. 2016;138(6):1608–1618.e12. doi: 10.1016/j.jaci.2016.09.028
27. Nair P., Pizzichini M.M., Kjarsgaard M., Inman M.D., EfthimiadisA., Pizzichini E., Hargreave F.E., O’Byrne P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009;360(10):985–993. doi: 10.1056/NEJMoa0805435
28. Yancey S.W., Keene O.N., Albers F.C., Ortega H., Bates S., Bleecker E.R., Pavord I. Biomarkers for severe eosinophilic asthma. J. Allergy Clin. Immunol. 2017;140(6):1509–1518. doi: 10.1016/j.jaci.2017.10.005
29. Jia G., Erickson R.W., Choy D.F., Mosesova S., Wu L.C., Solberg O.D., Shikotra A., Carter R., Audusseau S., Hamid Q., Bradding P., … Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) Study Group. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 2012;130(3):647–654.e10. doi: 10.1016/j.jaci.2012.06.025
30. Ragnoli B., Radaeli A., Pochetti P., Kette S., Morjaria J., Malerba M. Fractional nitric oxide measurement in exhaled air (FeNO): perspectives in the management of respiratory diseases. Ther. Adv. Chronic. Dis. 2023;14:20406223231190480. doi: 10.1177/20406223231190480
31. Ricciardolo F., Silkoff P. Perspectives on exhaled nitric oxide. J. Breath Res. 2017;11(4):047104. doi: 10.1088/1752-7163/aa7f0e
32. Alving K., Weitzberg E., Lundberg J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993;6(9):1368–1370.
33. Pillai P., Chan Y.C., Wu S.Y., Ohm-Laursen L., Thomas C., Durham S.R., Menzies-Gow A., Rajakulasingam R.K., Ying S., Gould H.J., Corrigan C.J. Omalizumab reduces bronchial mucosal IgE and improves lung function in non-atopic asthma. Eur. Respir J. 2016;8(6):1593–1601. doi: 10.1183/13993003.01501-2015
34. Bullens D.M., Truyen E., Coteur L., Dilissen E., Hellings P.W., Dupont L.J., Ceuppens J.L. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 2006;7(1):135. doi: 10.1186/1465-9921-7-135
35. Brusselle G.G., Koppelman G.H. Biologic therapies for severe asthma. N. Engl. J. Med. 2022;386(2):157–171. doi: 10.1056/NEJMra2032506
36. Chung K.F., Dixey P., Abubakar-Waziri H., Bhavsar P., Patel P.H., Guo S., Ji Y. Characteristics, phenotypes, mechanisms and management of severe asthma. Chin. Med. J. 2022;135(10):1141–1155. doi: 10.1097/CM9.0000000000001990
37. Kaur R., Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J. Allergy Clin. Immunol. 2019;144(1):1–12. doi: 10.1016/j.jaci.2019.05.031
38. Fayzullina R.M., Viktorov V.V., Gafurova R.R. Personalised medicine in bronchial asthma: current concepts and prospects. Vestnik Avitsenny = Bulletin of Avicenna. 2021;23(3):418–431. [In Russian]. doi: 10.25005/2074-0581-2021-23-3-418-4
39. Pelaia C., Calabrese C., Terracciano R., de Blasio F., Vatrella A., Pelaia G. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther. Adv. Respir. Dis. 2018;12:1753466618810192. doi: 10.1177/1753466618810192
40. Samitas K., Delimpoura V., Zervas E., Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur. Respir. Rev. 2015;24(138):594–601. doi: 10.1183/16000617.00001715
41. Giovannini M., Mori F., Barni S., de Martino M., Novembre E. Omalizumab and mepolizumab in the landscape of biological therapy for severe asthma in children: how to choose? Ital. J. Pediatr. 2019;45(1):151. doi: 10.1186/s13052-019-0737-4
42. Thibodeaux Q., Smith M.P., Ly K., Beck K., Liao W., Bhutani T. A review of dupilumab in the treatment of atopic diseases. Hum. Vaccin. Immunother. 2019;15(9):2129–2139. doi: 10.1080/21645515.2019.1582403
43. Castro M., Corren J., Pavord I.D., Maspero J., Wenzel S., Rabe K.F., Busse W.W., Ford L., Sher L., Fitz Gerald J.M.,… Teper A. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 2018;378(26):2486–2496. doi: 10.1056/NEJMoa1804092
44. Paller A.S., Simpson E.L., Siegfried E.C., Cork M.J., Wollenberg A., Arkwright P.D., Soong W., Gonzalez M.E., Schneider L.C., Sidbury R., … Participating investigators. Dupilumab in children aged 6 months to younger than 6 years with uncontrolled atopic dermatitis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2022;400(10356):908–919. doi: 10.1016/S0140-6736(22)01539-2
45. Jackson D.J., Bacharier L.B., Gergen P.J., Gagalis L., Calatroni A., Wellford S., Gill M.A., Stokes J., Liu A.H., Gruchalla R.S.,… US National Institute of Allergy and Infectious Disease’s Inner City Asthma Consortium. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet. 2022;400(10351):502–511. doi: 10.1016/S0140-6736(22)01198-9
46. Farne H.A., Wilson A., Powell C., Bax L., Milan S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst. Rev. 2017;9(9):CD010834. doi: 10.1002/14651858.CD010834.pub3
47. Venditto L., Morano S., Ferrante G., Piazza M., Tenero L., Piacentini G., Pecoraro L. The evolution of scientific knowledge in childhood asthma over time: a surprising history. Children (Basel). 2024;11(2):262. doi: 10.3390/children11020262
Review
For citations:
Ibisheva A.Kh., Shakhgireeva M.R., Khildikharoeva A.B., Uspanova L.S., Shamsadova S.A., Dzhabrailova L.V. Bronchial asthma in the era of personalized medicine. Сибирский научный медицинский журнал. 2024;44(6):41-47. (In Russ.) https://doi.org/10.18699/SSMJ20240604