Preview

Сибирский научный медицинский журнал

Advanced search

MODERN APPROACHES TO DIAGNOSTICS AND TREATMENT OF RETINAL VEIN OCCLUSION

https://doi.org/10.15372/SSMJ20190317

Abstract

Retinal vein occlusion is the one of the most common diseases, which amounts to 60 % of all acute vascular ocular pathology, and takes second place in the severity of retinal lesions and prognosis after diabetic retinopathy. It causes the visual disability in 15 % of cases. The main reason for the decrease vision in patients with occlusion of the central retinal vein and its branches is the development of macular edema, the degree of intensity of which depends mainly on the level and severity of the retinal vascular bed lesion. The article provides a review on the current aspects of retinal vein occlusion etiology and pathogenesis, and novel methods of diagnostics. The implementation into practice of highly precise noninvasive diagnostic method – optical coherence tomography angiography was a significant progress in clinical and diagnostic studies of macular edema as a result of retinal vein occlusions. The necessity of multimodal approach to management of patients with retinal vein occlusion for improvement of the treatment clinical and functional results is emphasized. The modern techniques for the treatment of retinal vein occlusion, their advantages and disadvantages are described; data on the anatomical and functional results of the use of these techniques are given. Actual approaches to treatment are divided into laser and pharmacological methods. The prospects of further improvement and development of combined treatment for retinal vein occlusion are considered.

About the Authors

P. L. Volodin
The S. Fyodorov Eye Microsurgery Federal State Institution of Minzdrav of Russia
Russian Federation

Volodin Pavel Lvovich – doctor of medical sciences, head of the laser retinal surgery department

127486, Moscow, Beskudnikovsky blvd. 59a



E. V. Ivanova
The S. Fyodorov Eye Microsurgery Federal State Institution of Minzdrav of Russia
Russian Federation

Ivanova Elena Vladimirovna – candidate of medical sciences, ophthalmologist of the laser retinal surgery department

127486, Moscow, Beskudnikovsky blvd. 59a



Yu. I. Kukharskaya
The S. Fyodorov Eye Microsurgery Federal State Institution of Minzdrav of Russia
Russian Federation

Kukharskaya Yuliya Igorevna – postgraduate student of the laser retinal surgery department

127486, Moscow, Beskudnikovsky blvd. 59a



References

1. Астахов Ю.С., Тульцева С.Н. Этиологические факторы развития тромбоза вен сетчатки у пациентов молодого возраста // Регионар. кровообращение и микроциркуляция. 2004. 3. (4). 39–42.

2. Белый Ю.А., Терещенко А.В., Попов С.Н., Володин П.Л., Шкворченко Д.О., Голенков А.К. Экспериментальное обоснование проведения радиальной оптической нейротомии при тромбозе центральной вены сетчатки // Офтальмохирургия. 2004. (3). 13–17.

3. Володин П.Л., Дога А.В., Иванова Е.В., Письменская В.А., Кухарская Ю.И., Хрисанфова Е.С. Персонализированный подход к лечению хронической центральной серозной хориоретинопатии на основе навигационной технологии микроимпульсного лазерного воздействия // Офтальмология. 2018. 15. (4). 394–404.

4. Володин П.Л., Желтов Г.И., Иванова Е.В., Соломин В.А. Калибровка параметров микроимпульсного режима лазера IRIDEX IQ 577 с помощью компьютерного моделирования и методов диагностики глазного дна // Соврем. технологии в офтальмологии. 2017. (1). 52–54.

5. Володин П.Л., Иванова Е.В. Компьютерное моделирование лазерного воздействия в режиме единичного микроимпульса и реакции белков хориоретинального комплекса для селективного и эффективного воздействия на клетки ретинального пигментного эпителия // Лазерная медицина. 2018. (1). 61–66.

6. Желтов Г.И., Глазков В.Н., Иванова Е.В. Селективное действие лазерных импульсов на ретинальный пигментный эпителий. Физические основы // ARS-MEDICA. 2012. 58. (3). 78–85.

7. Кацнельсон Л.А., Лысенко В.С. Патология сетчатой оболочки глаза // Рос. мед. журн. 1999. (3). 45–49.

8. Танковский В.Э. Тромбоз вен сетчатки. М., 2000. 263 с.

9. Тульцева С.Н. Плазмокоагуляционная тромбофилия и ее роль в развитии окклюзии вен сетчатки // Соврем. оптометрия. 2012. (1). 27–32.

10. Adhi M., Filho M.A., Louzada R.N., Kuehlewein L., de Carlo T.E., Baumal C.R. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiographyretinal capillary network and FAZ in RVO with OCTA // Investig. Ophthalmol. Vis. Sci. 2016. 57. 486–94.

11. Appiah A.P., Trempe C.L. Differences in contributory factors among hemicentral, central, and branch retinal vein occlusions // Ophthalmology. 1989. 96. (3). 364–366.

12. Arevalo J.F., Garcia R.A., Wu L., Rodriguez F.J., Dalma-Weiszhausz J., Quiroz-Mercado H., MoralesCanton V., Roca J.A., Berrocal M.H., GraueWiechers F., Robledo V., Pan-American Collaborative Retina Study Group. Radial optic neurotomy for central retinal vein occlusion: results of the PanAmerican Collaborative Retina Study Group (PACORES) // Retina. 2008. 28. (8). 1044–1052.

13. Azad R., Vivek K., Sharma Y. Ranibizumab as an adjunct to laser for macular edema secondary to branch retinal vein occlusion // Indian J. Ophthalmol. 2012. 60. (4). 263–266.

14. Bonnin S., Mane V., Couturier A., Julien M., Paques M., Tadayoni R. New insight into the macular deep vascular plexus imaged by optical coherence tomography angiography // Retina. 2015. 35. 2347– 2352.

15. Branch Vein Occlusion Stady Group. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion // Arch. Ophthalmol. 1986. 104. 34–41.

16. Browning David J. Retinal vein occlusions: Evidence-based management. N.Y.: Springer-Verlag, 2012. 265–275.

17. Buyru Özkurt Y., Akkaya S., Aksoy S., Şimşek M.H. Comparison of ranibizumab and subthreshold micropulse laser in treatment of macular edema secondary to branch retinal vein occlusion // Eur. J. Ophthalmol. 2018. 28. (6). 690–696.

18. Campochiaro P.A., Brown D.M., Awh C.C., Lee S.Y., Gray S., Saroj N., Murahashi W.Y., Rubio R.G. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelvemonth outcomes of a phase III study // Ophtalmology. 2011. 118. (10). 2041–2049. doi: 10.1016/j.ophtha.2011.02.038.

19. Campochiaro P.A., Sophie R., Pearlman J., Brown D.M., Boyer D.S., Heier J.S., Marcus D.M., Feiner L., Patel A. RETAIN Study Group.Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study // Ophthalmology. 2014. 121. (1). 209–219.

20. Campochiaro P.A., Wykoff C.C., Singer M., Johnson R., Marcus D., Yau L., Sternberg G. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study // Ophthalmology. 2014. 121. (12). 2432–2442. doi: 10.1016/j.ophtha.2014.06.011.

21. Chen Y.Y., Yen Y.F., Lin J.X., Feng S.C., Wei L.C., Lai Y.J., Shen Y.C. Risk of ischemic stroke, hemorrhagic stroke, and all-cause mortality in retinal vein occlusion: A nationwide population-based cohort study // J. Ophthalmol. 2018. 2018. ID 8629429.

22. David R., Zangwill L., Badarna M., Yassur Y. Epidemiology of retinal vein occlusion and its association with glaucoma and increased intraocular pressure // Ophthalmologica. 1988. 197. (2). 69–74.

23. De Carlo T.E., Bonini Filho M.A., Baumal C.R., Reichel E., Rogers A., Witkin A.J. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography // Ophthalmic. Surg. Lasers Imaging Retina. 2016. 47. 115–119.

24. Ehlken C., Grundel B., Michels D., Junker B., Stahl A., Schlunck G., Hansen L.L., Feltgen N., Martin G., Agostini H.T., Pielen A. Increased expression of angiogenic and inflammatory proteins in the vitreous of patients with ischemic central retinal vein occlusion // PLoS One. 2015. 10. (5). ID e0126859.

25. Flammer J., Konieczka K. Retinal venous pressure: the role of endothelin // EPMA J. 2015. 6. ID 21.

26. Glacet-Bernard A., Sellam A., Coscas F., Coscas G., Souied E.H. Optical coherence tomography angiography in retinal vein occlusion treated with dexamethasone implant: A new test for follow-up evaluation // Eur. J. Ophthalmol. 2016. 26. 460–468.

27. Haller J.A., Bandello F., Belfort R.Jr., Blumenkranz M.S., Gillies M., Heier J., Loewenstein A., Yoon Y.H., Jacques M.L., Jiao J., Li X.Y., Whitcup S.M. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion // Ophthalmology. 2010. 117. (6). 1134–1146.

28. Hayreh S.S. Prevalent misconceptions about acute retinal vascular occlusive disorders // Prog. Retin. Eye Res. 2005. 24. (4). 493–519.

29. Hayreh S.S., Klugman M.R., Beri M., Kimura A.E., Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase // Graefes Arch. Clin. Exp. Ophthalmol. 1990. 228. (3). 201–217.

30. Ip M.S., Scott I.U., van Veldhuisen P.C., Oden N.L., Blodi B.A., Fisher M., Singerman L.J., Tolentino M., Chan C.K., Gonzalez V.H. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion. The SCORE Study Research Group // Arch. Ophthalmol. 2009. 127. (9). 1101–1114.

31. Jefferies P., Clemett R., Day T. An anatomical study of retinal arteriovenous crossings and their role in the pathogenesis of retinal branch vein occlusions // Aust. N. Z. J. Ophthalmol. 1993. 21. (4). 213–217.

32. Kang J.W., Yoo R., Jo Y.H., Kim H.C. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion // Retina. 2017. 37. 1700–1709.

33. Kashani A.H., Lee S.Y., Moshfeghi A., Durbin M.K., Puliafito C.A. Optical coherence tomography angiography of retinal venous occlusion // Retina. 2015. 35. 2323–2331.

34. Kida T., Flammer J., Oku H., Konieczka K., Morishita S., Horie T., Ikeda T. Data on the involvement of endothelin-1 (ET-1) in the dysregulation of retinal veins // Data Brief. 2018. 21. 59–62.

35. Kofoed P.K., Munch I.C., Larsen M. Profound retinal ischaemia after ranibizumab administration in an eye with ocular ischaemic syndrome // Аcta Ophthalmol. 2010. 88. (7). 808–810.

36. Matsunaga D., Yi J., Puliafito C.A., Kashani A.H. OCT angiography in healthy human subjects // Ophthalmic. Surg. Lasers Imaging Retina. 2014. 45. 510–515.

37. McIntosh R.L., Rogers S.L., Lim L., Cheung N., Wang J.J., Mitchell P., Kowalski J.W., Nguyen H.P., Wong T.Y. Natural history of central retinal vein occlusion: an evidence-based systematic review // Ophthalmology. 2010. 117 (6). 1113–1123.

38. Noma H., Mimura T., Eguchi S. Association of inflammatory factors with macular edema in branch retinal vein occlusion // JAMA Ophthalmol. 2013. 131. (2). 160–165.

39. Novais E.A., Adhi M., Moult E.M., Louzada R.N., Cole E.D., Husvogt L. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography // Am. J. Ophthalmol. 2016. 164. 80–88.

40. Orth D.H., Patz A. Retinal branch vein occlusion // Surv. Ophthalmol. 1978. 22. 357–376.

41. Paques M., Tadayoni R., Sercombe R., Laurent P., Genevois O., Gaudric A. Structural and hemodynamic analysis of the mouse retinal microcirculation // Invest. Ophthalmol. Vis. Sci. 2003. 44. 4960–4967.

42. Peyman G.A., Kishore K., Conway M.D. Surgical chorioretinal venous anastomosis for ischemic central retinal vein occlusion // Ophthalmic. Surg. Lasers. 1999. 30. 605–614.

43. Quaggin S.E. Turning a blind eye to antiVEGF toxicities // J. Clin. Invest. 2012. 122. (11). 3849–3851

44. Rispoli M., Antonio L., Mastropasqua L., Lumbroso B. Angiography Version 2.0 // Retina Today. 2016. (6). 74–82.

45. Rogers S.L., McIntosh R.L., Lim L., Mitchell P., Cheung N., Kowalski J.W., Nguyen H.P., Wang J.J., Wong T.Y. Natural history of branch retinal vein occlusion: an evidence-based systematic review // Ophthalmology. 2010. 117. (6). 1094–1101.

46. Salz D.A., de Carlo T.E., Adhi M., Moult E., Choi W.J., Baumal C.R. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes // JAMA Ophthalmol. 2016. 134. 644–650.

47. Shock D. The retinal vessels: Comparative ophthalmoscopic and histologic studies on healthy and diseased eyes // JAMA. 1965. 192. 427.

48. Stanga P.E., Papayannis A., Tsamis E., Stringa F., Cole T., D’Souza Y. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography // Dev. Ophthalmol. 2016. 56. 113–121.

49. Suzuki N., Hirano Y., Yoshida M., Tomiyasu T., Uemura A., Yasukawa T. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion // Am. J. Ophthalmol. 2016. 161. 126–32.

50. Terashima H., Hasebe H., Okamoto F., Matsuoka N., Sato Y., Fukuchi T. Combination therapy of intravitreal ranibizumab and subthreshold micropulse photocoagulation for macular edema secondary to branch retinal vein occlusion: 6-months result // Retina. 2018. doi: 10.1097/IAE.0000000000002165.

51. Waheed N.K., de Carlo T.E., Chin A.T., Duker J.S. OCT angiography in retinal diagnosis and treatment // Retinal. Phys. 2015. 12. 26–42.


Review

Views: 304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)