Preview

Сибирский научный медицинский журнал

Advanced search

Interaction of tumor necrosis factor-alpha and interferon-gamma with bronchial phagocytic cells in non-allergic bronchial asthma patients

https://doi.org/10.18699/SSMJ20240515

Abstract

The contribution of immunoregulatory cytokines to the formation of cold airway hyperresponsiveness in asthma patients is important for understanding approaches to therapy. Aim of the study was to investigate the interaction of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) with bronchial phagocytes in non-allergic asthma patients depending on the airway response to cold air. Material and methods. In 41 patients with asthma, standard monitoring of clinical symptoms of the disease was performed with assessment of the level of asthma control using the Asthma Control Test (ACT) questionnaire, basic spirometry, collection of induced and spontaneously produced sputum, as well as exhaled breath condensate (EBC), and a bronchoprovocation test of isocapnic hyperventilation with cold (–20 ºС) air (IHCA), the content of TNF-α, IFN-γ in EBC and cellular composition of sputum. Results. Cold airway hyperresponsiveness was revealed in 15 patients (group 1), and in 26 patients (group 2) bronchial reaction to IHCA was absent. There were no intergroup differences in the level of asthma control (17.1 ± 0.89 and 18.7 ± 0.63 ACT points, respectively; p > 0.05) and indices of lung function (FEV1 91.2 ± 4.07 and 98.8 ± 2.61 %, respectively; p > 0.05). In response to IHCA in sputum of group 1 patients, the number of neutrophils significantly increased, the number of macrophages, structurally integral epithelial cells decreased, proportionally to this, the level of IFN-γ increased significantly in EBC, TNF-α content did not change. Conclusions. The response to isocapnic hyperventilation with cold air in non-allergic asthma patients with cold airway hyperresponsiveness is characterized by an increase in the level of IFN-γ in the exhaled breath condensate with no significant changes in the content of TNF-α. The increase in the proportion of neutrophils in sputum under the influence of cold stimulus is accompanied by a decrease in the number of macrophages and structurally integral epithelial cells because of inflammatory damage, destruction and cytolysis.

About the Authors

A. B. Pirogov
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Aleksey B. Pirogov, candidate of medical sciences

675000, Blagoveshchensk, Kalinina st., 22



A. G. Prihodko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Anna G. Prihodko, doctor of medical sciences

675000, Blagoveshchensk, Kalinina st., 22



N. A. Pirogova
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Natalia A. Pirogova, candidate of medical sciences

675000, Blagoveshchensk, Kalinina st., 22



Ju. M. Perelman
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Russian Federation

Juliy M. Perelman, doctor of medical sciences, corresponding member of RAS

675000, Blagoveshchensk, Kalinina st., 22



References

1. Hu X., Ivashkiv L.B. Cross-regulation of signaling pathways by interferon-γ: Implications for immune responses and autoimmune diseases. Immunity. 2009;31(4):539–550. doi: 10.1016/j.immuni.2009.09.002

2. Yarilin D.A. The role of tumor necrosis factor in the regulation of the inflammatory response of monocytes and macrophages. Immunologiya = Immunology. 2014;35(4):195–201. [In Russian].

3. Locati M., Curtale G., Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718

4. Nikonova A.A., Khaitov M.R., Khaitov R.M. Characteristics and role of macrophages in pathogenesis of acute and chronic lung diseases. Meditsinskaya immunologiya = Medical Immunology. 2017;19(6):657–672. [In Russian]. doi: 10.15789/1563-0625-2017-6-657-672

5. Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitsky E.B., Shefer N.A., Rodionov E.O., Stakheeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology. 2022;21(4):124–136. [In Russian]. doi: 10.21294/1814-4861-2022-21-4-124-136

6. Li M., Wang M., Wen Y., Zhang H., Zhao G.N., Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. Med. Comm. 2023;4(5):e349. doi: 10.1002/mco2.349

7. Pelaia G., Vatrella A., Busceti M.T., Gallelli L., Calabrese C., Terracciano R., Maselli R. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm. 2015;2015:879783. doi: 10.1155/2015/879783

8. Yamasaki A., Okazaki R., Harada T. Neutrophils and asthma. Diagnostics (Basel). 2022;12(5):1175. doi: 10.3390/diagnostics12051175

9. Marshall C.L., Hasani K., Mookherjee N. Immunobiology of steroid-unresponsive severe asthma. Front. Allergy. 2021;2:718267. doi: 10.3389/fal-gy.2021.718267

10. Kuruvilla M.E., Lee F.E., Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 2019;56(2):219– 233. doi: 10.1007/s12016-018-8712-1

11. Pirogov A.B., Prikhodko A.G., Pirogova N.A., Perelman J.M. Clinical and pathogenetic aspects of neutrophilic bronchial inflammation in asthma patients with cold-induced airway hyperresponsiveness (literature review). Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine. 2023;22(1):143–152. [In Russian]. doi: 10.20538/1682-0363-2023-1-143-152

12. Jiang Z., Zhu L. Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy. 2016;9:101–107. doi: 10.2147/jaa.s104508

13. Arora S., Deva K., Agarwalb B., Dasc P., Ali Syed M. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223(4-5):383–396. doi: 10.1016/j.im-bio.2017.11.001

14. Voronina E.V., Lobanova N.V., Yakhin I.R., Romanova N.A., Seregin Yu.A. Role of tumor necrosis factor alpha in immune pathogenesis of different diseases and its significance for evolving anticytokine therapy with monoclonal antibodies. Meditsinskaya immunologiya = Medical Immunology. 2018;20(6):797–806. [In Russian]. doi: 10.15789/1563-0625-2018-6-797-806

15. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2023 update). Available at: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf

16. Prikhodko A.G., Perelman J.M., Kolosov V.P. Airway hyperresponsiveness. Vladivostok: Dal’nauka, 2011. 204 p. [In Russian].

17. Dragonieri S., Bikov A., Capuano A., Scarlata S., Carpagnano G.E. Methodological aspects of induced sputum. Adv. Respir. Med. 2023;91(5):397–406. doi: 10.3390/arm91050031

18. Konstantinidi E.M., Lappas A.S., Tzortzi A.S., Behrakis P.K. Exhaled breath condensate: technical and diagnostic aspects. ScientificWorldJournal. 2015;2015:435160. doi: 10.1155/2015/435160

19. Ul’yanychev N.V. Systematic research in medicine. Saarbrücken: LAP LAMBERT, 2014. 140 p. [In Russian].

20. Trushina E.Yu., Kostina E.M., Baranova N.I., Tipikin V.A. The cytokines role as inflammation molecular markers in non-allergic bronchial asthma. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2018;(4):179. [In Russian].

21. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: The immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol. 2020;11:761. doi: 10.3389/fimmu.2020.00761

22. Singh S., Dutta J., Ray A., Karmakar A., Mabalirajan U. Airway epithelium: A neglected but crucial cell type in asthma pathobiology. Diagnostics (Basel). 2023;13(4):808. doi: 10.3390/diagnostics13040808

23. Salomon Benoit L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat. Rev. Rheumatol. 2021;17(8):487–504. doi: 10.1038/s41584-021-00639-6

24. Daniela S., Harald W. NF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 2023;19(9):576–591. doi: 10.1038/s41584-023-01002-7

25. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004;75(2):163–189. doi: 10.1189/jlb.0603252

26. Lutskii A.A., Zhirkov A.A., Lobzin D.Yu., Rao M., Alekseeva L.A., Meyrer M., Lobzin Yu.V. Interferon-γ: biological function and application for study of cellular immune response. Zhurnal infektologii = Journal of Infectology. 2015;7(4):10–22. [In Russian]. doi: 10.22625/2072-6732-2015-7-4-10-22

27. Usui T., Preiss J.C., Kanno Y., Yao Z.J., Bream J.H., O’Shea J.J., Strober W. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 2006;203(3):755–766. doi: 10.1084/jem.20052165

28. Shuai K., Liu B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 2003;3(11):942–954. doi: 10.1038/nri1226

29. Hertweck A., Vila de Mucha M., Barber P.R., Dagil R., Porter H., Ramos A., Lord G.M., Jenner R.G. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res. 2022;50(8):4557–4573. doi: 10.1093/nar/gkac258


Review

Views: 826


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)