On the setting up of numerical modeling of heart valve prostheses
https://doi.org/10.18699/SSMJ20240514
Abstract
The aim of the study was to compare scenarios of numerical modeling of the operation of a heart valve bioprosthesis, identifying their advantages and limitations. Material and methods. Numerical modeling was conducted in the Abaqus/ CAE (Dassault Systèmes, France) engineering analysis environment, simulating two cycles of the valve apparatus’s operation. In total, three different computer models were studied, each providing different levels of detail and complexity of the “UniLine” bioprosthesis. Model No.1 was the most simplified and considered only the geometry of the flap; Model No. 2 incorporated elastic connectors with variable stiffness; Model No. 3 included a composite support frame. Qualitative validation of the modeling results was conducted by comparing with the bench tests data obtained on the hydrodynamic stand (ViVitro Labs, Canada) during tests of the corresponding clinical model of the “UniLine” bioprosthesis. Results. One of the setups, Model No. 2, displayed an artificial stress concentration according to Von Mises in the connector attachment area, reaching 2.695 MPa, which is close to the material’s strength limit. Other setups showed a more moderate stress distribution – up to 0.803 and 0.529 MPa. Moreover, it was demonstrated that only Model No. 2 and Model No. 3 reproduce the key effect of the bioprosthesis operation, the mobility of the commissural posts, ensuring a qualitative match with the work in bench conditions. Conclusions. A methodology is proposed that may be useful for conducting further in silico studies of heart valve bioprostheses. Boundary conditions, methods for linking prosthetic components, and opportunities for large-scale “exploratory” studies based on using simplified models are described. The study results confirm the necessity of including all prosthesis components in the numerical model for a more comprehensive and realistic representation of its biomechanics. Such detail contributes to a more accurate safety and effectiveness assessment of the device and can also serve as a foundation for its further optimization.
Keywords
About the Authors
K. Yu. KlyshnikovRussian Federation
Kirill Yu. Klyshnikov, candidate of medical sciences
650002, Kemerovo, Academika Barbarasha blvd., 6
P. S. Onishchenko
Russian Federation
Pavel S. Onishchenko
650002, Kemerovo, Academika Barbarasha blvd., 6
T. V. Glushkova
Russian Federation
Tatyana V. Glushkova, candidate of biological sciences
650002, Kemerovo, Academika Barbarasha blvd., 6
T. N. Akentyeva
Russian Federation
Tatyana N. Akentyeva
650002, Kemerovo, Academika Barbarasha blvd., 6
A. E. Kostyunin
Russian Federation
Alexander E. Kostyunin, candidate of biological sciences
650002, Kemerovo, Academika Barbarasha blvd., 6
M. A. Rezvova
Russian Federation
Maria A. Rezvova
650002, Kemerovo, Academika Barbarasha blvd., 6
E. A. Ovcharenko
Russian Federation
Evgeny A. Ovcharenko, candidate of technical sciences
650002, Kemerovo, Academika Barbarasha blvd., 6
References
1. Abbasi M., Azadani A.N. A geometry optimization framework for transcatheter heart valve leaflet design. J. Mech. Behav. Biomed. Mater. 2020;102:103491. doi: 10.1016/j.jmbbm.2019.103491
2. Dabiri Y., Ronsky J., Ali I., Basha A., Bhanji A., Narine K. Effects of leaflet design on transvalvular gradients of bioprosthetic heart valves. Cardiovasc. Eng. Technol. 2016;7(4):363–373. doi: 10.1007/s13239-016-0279-5
3. Li K., Sun W. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress. Int. J. Numer. Method. Biomed. Eng. 2017;33(3):e02814. doi: 10.1002/cnm.2814
4. de Gaetano F., Bagnoli P., Zaffora A., Pandolfi A., Serrani M., Bruberrt J., Stasiak J., Moggridge G.D., Constantino M.L. A newly developed tri-leaflet polymeric heart valve prosthesis. J. Mech. Med. Biol. 2015;15(2):1540009. doi: 10.1142/S0219519415400096
5. Glushkova T.V., Ovcharenko E.A., Batranin A.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. A case report of bioprosthetic valve dysfunction after tricuspid valve replacement in a preschool patient: the contribution of pannus and calcification. Vestnik transplantologii i iskusstvennykh organov = Russian Journal of Transplantology and Artificial Organs. 2018;20(3):45–53. [In Russian]. doi: 10.15825/1995-1191-2018-3-45-53
6. Glushkova T.V., Ovcharenko E.A., Rogulina N.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. Dysfunction patterns of epoxy-treated tissue heart valves. Kardiologiya = Cardiology. 2019;59(10):49– 59. [In Russian]. doi: 10.18087/cardio.2019.10.n327
7. Balu A., Nallagonda S., Xu F., Krishnamurthy A., Hsu M.C., Sarkar S. A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Sci. Rep. 2019;9(1):18560. doi: 10.1038/s41598-019-54707-9
8. Abbasi M., Qiu D., Behnam Y., Dvir D., Clary C., Azadani A.N. High resolution three-dimensional strain mapping of bioprosthetic heart valves using digital image correlation. J. Biomech. 2018;76:27– 34. doi: 10.1016/j.jbiomech.2018.05.020
9. Abbasi M., Barakat M.S., Vahidkhah K., Azadani A.N. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater. 2016;62:33–44. doi: 10.1016/j.jmbbm.2016.04.031
10. Abbasi M., Barakat M., Dvir D., Azadani A. Detailed stress analysis of Edwards-SAPIEN and medtronic corevalve devices. Is leaflet stress comparable to surgical Carpentier–Edwards PERIMOUNT magna bioprosthesis? Struct. Hear. 2019;3(sup1):192– 192. doi: 10.1080/24748706.2019.1591103
11. Klyshnikov K.Yu., Ovcharenko E.A., Glushkova T.V., Kudryavtseva Yu.A., Barbarash L.S. Method for non-invasive assessment of the structure of a heart valve bioprosthesis. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2022;42(4):87–95. [In Russian]. doi: 10.18699/SSMJ20220408
12. Mao W., Li K., Sun W. Fluid–structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 2016;7(4):374–388. doi: 10.1007/s13239-016-0285-7
13. Zakerzadeh R., Hsu M.-C., Sacks M.S. Computational methods for the aortic heart valve and its replacements. Expert. Rev. Med. Devices. 2017;14(11):849– 866. doi: 10.1080/17434440.2017.1389274
14. Hall J.E. Guyton and Hall: textbook of medical physiology. 12th ed. R. Gruliow Philadelphia: Elsevier Saunders, 2011. 1112 p.
15. Onishchenko P.S., Glushkova T.V., Kostyunin A.E., Rezvova M.A., Akentyeva T.N., Barbarash L.S. Computer models of biomaterials used for the manufacture of flap apparatus of prosthetic heart valves. Materialovedenie= Materials Science. 2023;(7):30–39. [In Russian]. doi: 10.31044/1684-579X-2023-0-7-30-39
16. Morganti S., Brambilla N., Petronio A.S., Reali A., Bedogni F., Auricchio F. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. J. Biomech. 2016;49(12):2513–2519. doi: 10.1016/j.jbiomech.2015.10.048
17. Macron A., Pillet H., Doridam J., Rivals I., Sadeghinia M.J., Verney A., Rohan P.Y. Is a simplified finite element model of the gluteus region able to capture the mechanical response of the internal soft tissues under compression? Clin. Biomech. 2020;71:92–100. doi: 10.1016/j.clinbiomech.2019.10.005
18. Soares J.S., Feaver K.R., Zhang W., Kamensky D., Aggarwal A., Sacks M.S. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 2016;7(4):309–351. doi: 10.1007/s13239-016-0276-8
19. Hsu M.C., Kamensky D., Xu F., Kiendl J., Wang C., Wu M.C.H., Mineroff J., Reali A., Bazilevs Y., Sacks M.S. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 2015;55(6):1211–1225. doi: 10.1007/s00466-015-1166-x
20. Serrani M., Brubert J., Stasiak J., de Gaetano F., Zaffora A., Costantino M.L., Moggridge G.D. A computational tool for the microstructure optimization of a polymeric heart valve prosthesis. J. Biomech. Eng. 2016;138(6):061001. doi: 10.1115/1.4033178
21. Abbasi M., Barakat M.S., Dvir D., Azadani A.N. A non-invasive material characterization framework for bioprosthetic heart valves. Ann. Biomed.Eng. 2019;47(1):97–112. doi: 10.1007/s10439-018-02129-5
22. Martin C., Sun W. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: A fatigue simulation study. J. Biomech. 2015;48(12):3026–3034. doi: 10.1016/j.jbiomech.2015.07.031
23. Vriesendorp M.D., de Lind van Wijngaarden R.A.F., Rao V., Moront M.G., Patel H.J., Sarnowski E., Vatanpour S., Klautz R.J.M. An in vitro comparison of internally versus externally mounted leaflets in surgical aortic bioprostheses. Interact. Cardiovasc. Thorac. Surg. 2020;30(3):417–423. doi: 10.1093/icvts/ivz277
24. Martin C., Sun W. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 2014;13(4):759–770. doi: 10.1007/s10237-013-0532-x
25. Khalivopulo I.K., Evtushenko A.V., Shabaldin A.V., Troshkinev N.M., Stasev A.N., Kokorin S.G., Barba-rash L.S. Comparison of propensity scores for surgical treatment of bioprosthetic mitral valve dysfunction using traditional and “valve-in-valve” methods. Kompleksnye problemy serdechno-sosudistykh zabolevaniy = Complex Issues of Cardiovascular Diseases. 2023;12(2):57–69. [In Russian]. doi: 10.17802/2306-1278-2023-12-2-57-69
Review
For citations:
Klyshnikov K.Yu., Onishchenko P.S., Glushkova T.V., Akentyeva T.N., Kostyunin A.E., Rezvova M.A., Ovcharenko E.A. On the setting up of numerical modeling of heart valve prostheses. Сибирский научный медицинский журнал. 2024;44(5):119-128. (In Russ.) https://doi.org/10.18699/SSMJ20240514