Preview

Сибирский научный медицинский журнал

Расширенный поиск

Роль внеклеточной АТФ в регуляции функциональной активности клеток

https://doi.org/10.18699/SSMJ20240506

Аннотация

Выполнены поиск и акализ научных статей, представленных в базах данных PubMed, ScienceDirect, Elsevier, eLibrary за 2000–2024 гг. Критерием отбора служило наличие в статьях информации о концентрации внеклеточной АТФ в нормальных и патологических тканях, механизмах пуринергической регуляции функционирования клеток, экспрессии на клетках эктонуклеотидаз CD73 и CD39, регулирующих катаболизм провоспалительной внеклеточной АТФ до иммуносупрессивного аденозина. Представлены современные данные о роли внеклеточной АТФ в регуляции функционирования клеток в норме и при патологии, при воспалении, формировании клеточного и гуморального иммунного ответа, а также об изучении механизмов пуринергической передачи сигналов от внеклеточной АТФ при разработке таргетных лекарственных препаратов при различных заболеваниях, включая новообразования, нейродегенеративные и аутоиммунные патологии.

Об авторе

В. П. Патракеева
Институт физиологии природных адаптаций ФИЦ комплексного изучения Арктики им. академика Н.П. Лаверова УроРАН
Россия

Патракеева Вероника Павловна, к.б.н.

163065, г. Архангельск, пр. Никольский, 20



Список литературы

1. Eltzschig H.K., Sitkovsky M.V., Robson S.C. Purinergic signaling during inflammation. N. Engl. J. Med. 2012;367(24):2322–2333. doi: 10.1056/NEJMra1205750

2. Jiang L., Chen H.Y., He C.H., Xu H.B., Zhou Z.R., Wu M.S., Fodjo E.K., He Y., Hafez M.E., Qian R.C., Li D.W. Dual-modal apoptosis assay enabling dynamic visualization of ATP and reactive oxygen species in living cells. Anal. Chem. 2023;95(6):3507–3515. doi: 10.1021/acs.analchem.2c05671

3. Hasuzawa N., Moriyama S., Moriyama Y., Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. Biochim. Biophys. Acta Biomembr. 2020;1862(12):183408. doi: 10.1016/j.bbamem.2020.183408

4. Moriyama Y., Hiasa M., Sakamoto S., Omote H., Nomura M. Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic. Signalling. 2017;13(3):387–404. doi: 10.1007/s11302-017-9568-1

5. Gorelik J., Zhang Y., Sanchez D., Shevchuk A., Frolenkov G., Lab M., Klenerman D., Edwards C., Korchev Y. Aldosterone acts via an ATP autocrine/ paracrine system: the Edelman ATP hypothesis revisited. Pro.c Natl. Acad. Sci. USA. 2005;102(42):15000–15005. doi: 10.1073/pnas.0507008102

6. Ismaeel S., Qadri A. ATP release drives inflammation with lysophosphatidylcholine. Immunohorizons. 2021;5(4):219–233. doi: 10.4049/immunohorizons.2100023

7. Seminario-Vidal L., Kreda S., Jones L., O’Neal W., Trejo J., Boucher R.C., Lazarowski E.R. Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of Rhoand Ca2+-dependent signaling pathways. J. Biol. Chem. 2009;284(31):20638–20648. doi: 10.1074/jbc.M109.004762

8. Moritz C.E., Teixeira B.C., Rockenbach L., Reischak-Oliveira A., Casali E.A., Battastini A.M. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session. Mol. Cell. Biochem. 2017;426(1-2):55–63. doi: 10.1007/s11010-016-2880-1

9. Сладкова Е.А. Влияние пуринергической сигнальной системы на свойства клеток крови человека при старении организма. Ж. мед.-биол. исслед. 2021;9(1):51–57. doi: 10.37482/2687-1491-Z043

10. Antonioli L., Pacher P., Vizi E.S., Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013;19(6):355–367. doi: 10.1016/j.mol-med.2013.03.005

11. Sperber H.S., Raymond K.A., Bouzidi M.S., Ma T., Valdebenito S., Eugenin E.A., Roan N.R., Deeks S.G., Winning S., Fandrey J., Schwarzer R., Pillai S. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Сell Rep. 2023;42(11):113285. doi: 10.1016/j.cel-rep.2023.113285

12. Kobayashi D., Umemoto E., Miyasaka M. The role of extracellular ATP in homeostatic immune cell migration. Curr. Opin Pharmacol. 2023;68:102331. doi: 10.1016/j.coph.2022.102331

13. Ledderose C., Bromberger S., Slubowski C.J., Sueyoshi K., Aytan D., Shen Y., Junger W.G. The purinergic receptor P2Y11 choreographs the polariza-tion, mitochondrial metabolism, and migration of T lymphocytes. Sci. Signal. 2020;13(651):eaba3300. doi: 10.1126/scisignal.aba3300

14. Ledderose C., Liu K., Kondo Y., Slubowski C.J., Dertnig T., Denicoló S., Arbab M., Hubner J., Konrad K., Fakhari M., … Junger W.G. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J. Clin. Invest. 2018;128(8): 3583–3594. doi: 10.1172/JCI120972

15. Gurusamy M., Tischner D., Shao J., Klatt S., Zukunft S., Bonnavion R., Günther S., Siebenbrodt K., Kestner R.I., Kuhlmann T., … Wettschureck N. G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat. Commun. 2021;12(1):6798–6814. doi: 10.1038/s41467-021-26882-9

16. Burnstock G., Boeynaems J.M. Purinergic signalling and immune cells. Purinergic Signal. 2014;10(4):5229–5564. doi: 10.1007/s11302-014-9427-2

17. Junger W.G. Immune cell regulation by autocrine purinergic signaling. Nat. Rev. Immunol. 2011;11(3):201–212. doi: 10.1038/nri2938

18. Ledderose C., Junger W.G. Mitochondria synergize with P2 receptors to regulate human T cell function. Front. Immunol. 2020;11:549889. doi: 10.3389/fimmu.2020.549889

19. Quiroga J., Alarcón P., Manosalva C., Taubert A., Hermosilla C., Hidalgo M.A., Carretta M.D., Burgos R.A. Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. Dev. Comp. Immunol. 2020;113:103768. doi: 10.1016/j.dci.2020.103768

20. Adrover J.M., McDowell S.A.C., He X.Y., Quail D.F., Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 2023;41(3):505–526. doi: 10.1016/j.ccell.2023.02.001

21. Bastid J., Cottalorda-Regairaz A., Alberici G., Bonnefoy N., Eliaou J.F., Bensussan A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene. 2013;32(14):1743–1751. doi: 10.1038/onc.2012.269

22. Nikolova M., Carriere M., Jenabian M.A., Limou S., Younas M., Kök A., Huë S., Seddiki N., Hulin A., Delaneau O., … Lévy Y. CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog. 2011;7(7):e1002110. doi: 10.1371/journal.ppat.1002110

23. Guzman-Flores J.M., Cortez-Espinosa N., Cortés-Garcia J.D., Vargas-Morales J.M., Cataño-Cañizalez Y.G., Rodríguez-Rivera J.G., Portales-Perez D.P. Expression of CD73 and A2A receptors in cells from subjects with obesity and type 2 diabetes mellitus. Immunobiology. 2015;220(8):976–984. doi: 10.1016/j.imbio.2015.02.007

24. Радыгина Т.В., Купцова Д.Г., Петричук С.В., Семикина Е.Л., Фисенко А.П. Экспрессия эктонуклеотидаз CD39 и CD73 в популяциях CD4+ лимфоцитов у условно здоровых детей. Рос. иммунол. ж. 2022; 25(3):283–290. doi: 10.46235/1028-7221-1155-EOC

25. Chiarella A.M., Ryu Y.K., Manji G.A., Rustgi A.K. Extracellular ATP and adenosine in cancer pathogenesis and treatment. Trends Cancer. 2021;7(8):731–750. doi: 10.1016/j.trecan.2021.04.008

26. Hu L.P., Zhang X.X., Jiang S.H., Tao L.Y., Li Q., Zhu L.L., Yang M.W., Huo Y.M., Jiang Y.S., Tian G.A., … Zhang Z.G. Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin. Cancer Res. 2019;25(4):1318–1330. doi: 10.1158/1078-0432.CCR-18-2297

27. Virgilio F. Di, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2017;36(3):293–303. doi: 10.1038/onc.2016.206

28. de Marchi E., Orioli E., Pegoraro A., Sangaletti S., Portararo P., Curti A., Colombo M.P., di Virgilio F., Adinolfi E. The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene. 2019;38(19):3636–3650. doi: 10.1038/s41388-019-0684-y

29. Kepp O., Bezu L., Yamazaki T., di Virgilio F., Smyth M.J., Kroemer G., Galluzzi L. ATP and cancer immunosurveillance. EMBO J. 2021;40(13):e108130. doi: 10.15252/embj.2021108130

30. Pietrocola F., Pol J., Vacchelli E., Rao S., Enot D.P., Baracco E.E., Levesque S., Castoldi F., Jacquelot N., Yamazaki T., … Kroemer G. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30(1):147–160. doi: 10.1016/j.ccell.2016.05.016

31. Jiang Z.F., Wu W., Hu H.B., Li Z.Y., Zhong M., Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J. Gastroenterol. 2022;28(36):5265–5279. doi: 10.3748/wjg.v28.i36.5265

32. Dixit A., Cheema H., George J., Iyer S., Dudeja V., Dawra R., Saluja A.K. Extracellular release of ATP promotes systemic inflammation during acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317(4):G463–G475. doi: 10.1152/ajpgi.00395.2018

33. Dwyer K.M., Kishore B.K., Robson S.C. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat. Rev. Nephrol. 2020;16(9):509–524. doi: 10.1038/s41581-020-0304-7

34. Скоркина М.Ю., Шевченко Т.С., Феттер В.В., Черкашина О.В., Пальчиков М.Ю. Влияние внеклеточной молекулы АТФ на функциональные свойства плазмалеммы гранулоцитов. Гены и клетки. 2020;15(3):63–67. doi: 10.23868/202011010

35. Орлов С.Н., Смаглий Л.В., Гусакова С.В., Рыдченко В.С., Бирулина Ю.Г., Байков А.Н., Васильев В.Н., Суханова Г.А., Федорова Т.С., Ласукова Т.В. Роль калиевой проводимости мембраны в механизмах действия внеклеточного АТФ на сократительную активность сосудистых гладкомышечных клеток. Бюл. сиб. мед. 2016;15(5):105–112. doi: 10.20538/1682-0363-2016-5-105-112.

36. Сервули Е.А., Постовская А.М., Сапожников А.М., Шевченко М.А Динамика изменения концентраций внеклеточных форм АТФ и белка теплового шока 70 кДа (БТШ70) при индуцированном аллергическом воспалении дыхательных путей. Рос. иммун. ж. 2014;8(3):398– 401.

37. Mori Y., Shiratsuchi N., Sato N., Chaya A., Tanimura N., Ishikawa S., Kato M., Kameda I., Kon S., Haraoka Y., Ishitani T., Fujita Y. Extracellular ATP facilitates cell extrusion from epithelial layers mediated by cell competition or apoptosis. Curr. Biol. 2022;32(10):2144–2159.e5. doi: 10.1016/j.cub.2022.03.057

38. MacLeod A.S., Rudolph R., Corriden R., Ye I., Garijo O., Havran W.L. Skin-resident T cells sense ultraviolet radiation-induced injury and contribute to DNA repair. J. Immunol. 2014;192(12):5695–702. doi: 10.4049/jimmunol.1303297

39. Lalo U., Bogdanov A., Pankratov Y. Ageand experience-related plasticity of ATP-mediated signaling in the neocortex. Front. Cell. Neurosci. 2019;13:242. doi: 10.3389/fncel.2019.00242

40. Gaff J., Estiasari R., Diafiri D., Halstrom S., Kamerman P., Price P. Neurocognitive outcomes in indonesians living with HIV are influenced by polymorphisms in the gene encoding purinergic P2X receptor 7. Brain Behav. Immun. Health. 2021;13:100220. doi: 10.1016/j.bbih.2021.100220

41. Soare A.Y., Freeman T.L., Min A.K., Malik H.S., Osota E.O., Swartz T.H. P2RX7 at the host-pathogen interface of infectious diseases. Microbiol. Mol. Biol. Rev. 2021;85(1):e00055-20. doi: 10.1128/MMBR.00055-20

42. Xu R., Yuan L.S., Gan Y.Q., Lu N., Li Y.P., Zhou Z.Y., Hu B., Wong T.S., He X.H., Zha Q.B., Ouyang D.Y. Extracellular ATP contributes to the reactive oxygen species burst and exaggerated mitochondrial damage in D-galactosamine and lipopolysaccharideinduced fulminant hepatitis. Int. Immunopharmacol. 2024;130:111680. doi: 10.1016/j.intimp.2024.111680

43. Douguet L., Janho Dit Hreich S., Benzaquen J., Seguin L., Juhel T., Dezitter X. Duranton C., Ryffel B., Kanellopoulos J., Delarasse C., … Vouret-Craviari V. A small-molecule P2RX7 activator promotes antitumor immune responses and sensitizes lung tumor to immunotherapy. Nat. Commun. 2021;12(1):653. doi: 10.1038/s41467-021-20912-2

44. Kamata-Sakurai M., Narita Y., Hori Y., Nemoto T., Uchikawa R., Honda M., Hironiwa N., Taniguchi K., Shida-Kawazoe M., Metsugi S., … Igawa T. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 2021;11(1):158–175. doi: 10.1158/2159-8290.CD-20-0328

45. Yoon M.J., Lee H.J., Kim J.H., Kim D.K. Extracellular ATP induces apoptotic signaling in human monocyte leukemic cells, HL-60 and F-36P. Arch. Pharm. Res. 2006;29(11):1032–1041. doi: 10.1007/BF02969288

46. Mimoto F., Tatsumi K., Shimizu S., Kadono S., Haraya K., Nagayasu M., Suzuki Y., Fujii E., Kamimura M., Hayasaka A., … Igawa T. Exploitation of elevated extracellular ATP to specifically direct antibody to tumor microenvironment. Cell Rep. 2020;33(12):108542. doi: 10.1016/j.celrep.2020.108542

47. Shi C., Chen M., Li X., Fu Y., Yang D., Wen T., Zhao W., Sun Y., Wang W., Lu C., … Quan G. ATPadenosine axis regulation combined with microneedle assisted photoimmunotherapy to boost the immunotherapy efficiency. J. Control. Release. 2024; 367:1–12. doi: 10.1016/j.jconrel.2024.01.035

48. Miras-Portugal M.T., Menéndez-Méndez A., Gómez-Villafuertes R., Ortega F., Delicado E.G., Pérez-Sen R., Gualix J. Physiopathological role of the vesicular nucleotide transporter (VNUT) in the central nervous system: relevance of the vesicular nucleotide release as a potential therapeutic target. Front. Cell. Neurosci. 2019;13:224. doi: 10.3389/fncel.2019.00224

49. Hasan D., Shono A., van Kalken C.K., van der Spek P.J., Krenning E.P., Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signaling. Purinergic Signal. 2022;18(1):13–59. doi: 10.1007/s11302-021-09814-6

50. Pacheco P.A.F., Faria R.X. The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand. J. Immunol. 2021;93(2):e12960. doi: 10.1111/sji.12960

51. Agteresch H.J., Dagnelie P.C., van der Gaast A., Stijnen T., Wilson J.H. Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 2000;92(4):321–328. doi: 10.1093/jnci/92.4.321

52. Beijer S., Hupperets P.S., van den Borne B.E., Eussen S.R., van Henten A.M., van den Beukenvan Everdingen M., de Graeff A., Ambergen T.A., van den Brandt P.A., Dagnelie P.C. Effect of adenosine 5′-triphosphate infusions on the nutritional status and survival of preterminal cancer patients. Anticancer Drugs. 2009;20(7):625–633. doi: 10.1097/CAD.0b013e32832d4f22

53. Rapaport E., Salikhova A., Abraham E.H. Continuous intravenous infusion of ATP in humans yields large expansions of erythrocyte ATP pools but extracellular ATP pools are elevated only at the start followed by rapid declines. Purineric Signal. 2015;11(2):251– 262. doi: 10.1007/s11302-015-9450-y

54. Coolen E.J., Arts I.C., Bekers O., Vervaet C., Bast A., Dagnelie P.C. Oral bioavailability of ATP after prolonged administration. Br. J. Nutr. 2011;105(3):357– 366. doi: 10.1017/S0007114510003570

55. Kichenin K., Seman M. Chronic oral administration of ATP modulates nucleoside transport and purine metabolism in rats. J. Pharmacol. Exp. Ther. 2000;294(1):126–133.

56. Kichenin K., Decollogne S., Angignard J., Seman M. Cardiovascular and pulmonary response to oral administration of ATP in rabbits. J. Appl. Physiol. 2000;88(6):1962–1968. doi: 10.1152/jappl.2000.88.6.1962


Рецензия

Для цитирования:


Патракеева В.П. Роль внеклеточной АТФ в регуляции функциональной активности клеток. Сибирский научный медицинский журнал. 2024;44(5):53-60. https://doi.org/10.18699/SSMJ20240506

For citation:


Patrakeeva V.P. The role of extracellular ATP in regulating the functional activity of cells. Сибирский научный медицинский журнал. 2024;44(5):53-60. (In Russ.) https://doi.org/10.18699/SSMJ20240506

Просмотров: 449


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)