The role of bioelements ‒ components of free radical oxidation ‒ in the genesis of childhood obesity
https://doi.org/10.18699/SSMJ20240503
Abstract
Currently, there is no common understanding of the bioelement status of obese children and adolescents. In this regard, we have summarized the available data on open access and presented information on the role and content of bioelements involved in the regulation of free radical homeostasis in the genesis of childhood obesity. The literature review revealed modern ideas about obesity as a metabolic pathology. The multifactorial nature of the development of oxidative stress in obesity, including in children and adolescents, is considered, the role of bioelements in the regulation of free radical homeostasis is revealed and it is shown that they can act as cofactors of antioxidant enzymes and/or be initiators of oxidative reactions. The most significant bioelements involved in the regulation of free radical processes are copper, zinc, manganese, selenium and iron. The analysis of the literature shows that children and adolescents with obesity experience changes in the metabolism of the main bioelements involved in the regulation of redox homeostasis. The content of copper, zinc, selenium, manganese and iron may vary depending on the gender and age of the subjects, as well as the type of biomaterial being studied.
About the Authors
A. S. LesnayaRussian Federation
Anastasiya S. Lesnaya, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
M. A. Darenskaya
Russian Federation
Marina A. Darenskaya, doctor of biological sciences, professor of the RAS
664003, Irkutsk, Timiryazeva st., 16
L. V. Rychkova
Russian Federation
Lyubov V. Rychkova, doctor of medical sciences, professor, corresponding member of RAS
664003, Irkutsk, Timiryazeva st., 16
N. V. Semenova
Russian Federation
Natalya V. Semenova, doctor of biological sciences
664003, Irkutsk, Timiryazeva st., 16
Zh. V. Prokhorova
Russian Federation
Zhanna V. Prokhorova, candidate of biological sciences
664003, Irkutsk, Timiryazeva st., 16
V. А. Shevchuk
Russian Federation
Valeria А. Shevchuk
664003, Irkutsk, Timiryazeva st., 16
L. I. Kolesnikova
Russian Federation
Lyubov I. Kolesnikova, doctor of medical sciences, рrofessor, academician of the RAS
664003, Irkutsk, Timiryazeva st., 16
References
1. Ametov A.S., Pashkova E.Yu., Ramazanova Z.D., Darsigova M.N. Obesity as a non-infectious epidemic of the 21st century. Modern ideas about pathogenesis, risks and approaches to pharmacotherapy. Endokrinologiya: Novosti. Mneniya. Obuchenie = Endocrinology: News. Opinions. Education. 2019;(2):57–66. [In Russian]. doi: 10.24411/2304-9529-2019-12007
2. Darenskaya M.A., Kolesnikova L.I., Rychkova L.V., Kravtsova O.V., Semenova N.V., Kolesnikov S.I. Relationship between lipid metabolism state, lipid peroxidation and antioxidant defense system in girls with constitutional obesity. AIMS Molecular Science. 2021;8(2):117–126. doi: 10.3934/molsci.2021009
3. Milner E.B., Shirokov D.A., Leonova I.А. Morbid obesity in adolescents (review). Profilakticheskaya i klinicheskaya meditsina = Preventive and Clinical Medicine. 2020;1(74):42–50. [In Russian].
4. Bocharova O.V., Teplyakova E.D. Obesity in children and adolescents is a healthcare problem of the XXI century. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal. 2020;101(3):381–388. [In Russian]. doi: 10.17816/KMJ2020-381
5. Lesnaya A.S., Darenskaya M.A., Semenova N.V., Kolesnikova L.I. A new aspect of metabolic disorders in obesity: carbonyl stress. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2023;43(6):24–33. [In Russian]. doi: 10.18699/SSMJ20230603
6. Shkurat M.A., Mashkina E.V., Milyutina N.P., Shkurat T.P. The role of polymorphism of redox-sensitive genes in the mechanisms of oxidative stress in obesity and metabolic diseases. Ecological Genetics. 2023;21(3):261–287. doi: 10.17816/ecogen562714
7. Gutiérrez-Solis A.L., Garrido-Dzib A.G., Rochel-Pérez A., Magallón-Zertuche V., Chávez-Loría G., Medina-Vera I., Avila-Nava A. Oxidative stress biomarkers in Mexican subjects with overweight and obesity: a systematic review. Metab. Syndr. Relat. Disord. 2023;21(4):188–196. doi: 10.1089/met.2023.0001
8. Selvaraju V., Ayine P., Fadamiro M., Babu J.R., Brown M., Geetha T. Urinary biomarkers of inflammation and oxidative stress are elevated in obese children and correlate with a marker of endothelial dysfunction. Oxid. Med. Cell. Longev. 2019;2019:9604740. doi: 10.1155/2019/9604740
9. Povarova O.V., Gorodetskaya E.A., Kalenikova E.I., Medvedev O.S. Metabolic markers and oxidative stress in children’s obesity pathogenesis. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2020;65(1):22–29. [In Russian]. doi: 10.21508/1027-4065-2020-65-1-22-29
10. Kravchenko S.D., Kozlova N.M., Tirikova O.V. Oxidative stress evaluation methods as potential biomarkers in NAFLD. Mezhdunarodnyy nauchnoissledovatel’skiy zhurnal = International Research Journal. 2022;(8):58–72. [In Russian]. doi: 10.23670/IRJ.2022.122.86
11. Moldogazieva N.T., Mokhosoev I.M., Melnikova T.I., Zavadsky S.P., Kuzmenko A.N., Terentyev A.A. Dual character of reactive oxygen, nitrogen, and halogen species: Endogenous sources, interconversions and neutralization. Biochemistry (Mosc.). 2020;85(Suppl.1):S56–S78. [In Russian]. doi: 10.1134/S0006297920140047
12. Lysenko V.I. Oxidative stress as a non-specific factor of organ damage pathogenesis (review of literature and own data). Meditsina neotlozhnykh sostoyaniy = Emergency Medicine. 2020;16(1):24–35. [In Russian]. doi: 10.22141/2224-0586.16.1.2020.196926
13. Anikin D.A., Demko I.V., Solovyeva I.A., Sobko E.A., Gordeeva N.V., Kraposhina A.Yu. Free radical oxidation in the pathogenesis of metabolic syndrome. Profilakticheskaya meditsina = The Russian Journal of Preventive Medicine and Public Health. 2022;25(11):98–104. [In Russian]. doi: 10.17116/profmed20222511198
14. Drapkina O.M., Samorodskaya I.V., Starinskaya M.A., Kim O.T., Neymark A.E. Obesity: assessment and tactics of patient management. Moscow: Silicea-Poligraph, 2021. 180 p. [In Russian].
15. Dron A.N., Karpova I.A., Chernova A.M. The effects of sex steroids on the free-radical oxidation of lipids in women. Meditsinskaya nauka i obrazovanie Urala = Medical Science and Education of the Urals. 2013;14(1):177–180. [In Russian].
16. Nikitina O.A., Darenskaya M.A., Rychkova L.V., Semenova N.V., Brichagina A.S., Votineva A.S., Kolesnikova L.I. Features of lipid metabolism in adolescents with idiopathic obesity of different ethnic groups. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2022;(3):87. [In Russian]. doi:10.17513/spno.31696
17. Nussbaumerova B., Rosolova H. Obesity and dyslipidemia. Curr. Atheroscler. Rep. 2023;25(12):947– 955. doi: 10.1007/s11883-023-01167-2
18. Lankin V.Z., Tikhase A.K., Kosach V.Ya. Comparative susceptibility to oxidation of different classes of blood plasma lipoproteins. Biochemistry (Mosc.)). 2022;87(11):1335–1341. doi: 10.1134/S0006297922110128
19. Darenskaya M.A., Rychkova L.V., Kolesnikov S.I., Semenova N.V., Nikitina O.A., Brichagina A.S., Mikhalevich I.M., Kolesnikova L.I. Biochemical status of obese male adolescents of different ethnicity: discriminant analysis in the identification of the most informative indicators. Bull. Exp. Biol. Med. 2022;173(4):459– 463. doi: 10.1007/s10517-022-05579-z
20. Khasanova G.M., Agzamova Sh.A. Causes and pathogenetic aspects of the formation of obesity in children. Evraziyskoe nauchnoe obyedinenie = Eurasian Scientific Association. 2019;(6-3):204–207. [In Russian].
21. Darenskaya M.A., Rychkova L.V., Kolesnikov S.I., Kravtsova O.V., Semenova N.V., Brichagina A.S., Bliznyuk A., Yuzvak N., Rashidova M.A., Kolesnikova L.I. Oxidative stress index levels in Asian adolescents with exogenous-constitutional obesity. Int. J. Biomed. 2022;12(1):142–146. doi: 10.21103/Article12(1)_OA16
22. Lukanina S.N., Sakharov A.V., Prosenko O.I., Zhuchaev K.V., Borisenko E.A. Influence of oxidative stress on the element status of tissue of organs regulations of mineral homeostasis. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny imeni Nikolaya Ernestovicha Baumana = Scientific Notes. Kazan Bauman State Academy of Veterinary Medicine. 2020;241(1):130–138. [In Russian]. doi: 10.31588/2413-4201-1883-241-1-130-138
23. Grigoriev K.I., Kharitonova L.A., Grigoriev A.I., Bogomaz L.V. Nutritional theories and practical solutions to improve the health of children and adolescents. Eksperimental’naya i klinicheskaya gastroenter-ologiya = Experimental and Clinical Gastroenterology. 2023;(1):117–125. [In Russian]. doi: 10.31146/1682-8658-ecg-209-1-117-125
24. Nikitina O.A., Darenskaya M.A., Rychkova L.V., Semenova N.V., Lesnaya A.S., Prokhorova Zh.V., Kolesnikova L.I. Antioxidant status in adolescents with idiopathic obesity. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2023;(5):39–48. [In Russian]. doi: 10.17513/spno.33006
25. Zheng M., Liu Y., Zhang G., Yang Z., Xu W., Chen Q. The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants. 2023;12(9):1675. doi: 10.3390/antiox12091675
26. Saxena P., Selvaraj K., Khare S.K., Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett. 2022;44(1):1–22. doi: 10.1007/s10529-021-03200-3
27. Islam M.N., Rauf A., Fahad F.I., Emran T.B., Mitra S., Olatunde A., Shariati M.A., Rebezov M., Rengasamy K.R.R., Mubarak M.S. Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022;62(26):7282– 7300. doi: 10.1080/10408398.2021.1913400
28. Ryspekova N.N., Nurmukhambetov A.N., Balabekova M.K., Akanov A.A. Metallothioneins and their role in adaptation to the action of damaging factors (literature review). Vestnik Kazakhskogo Natsional’nogo meditsinskogo universiteta = Bulletin of the Kazakh National Medical University. 2014;(1):298–303. [In Russian].
29. Akhmedzhanova Z.I., Zhiemuratova G.K., Danilova E.A., Karimov D.A. Macroand microelements in the vital activity of the body and their relationship with the immune system (literature review). Zhurnal teoreticheskoy i klinicheskoy meditsiny = Journal of Theoretical and Clinical Medicine. 2020;(1):16–21. [In Russian].
30. Brichagina A.S., Semenova N.V., Madaeva I.M. The glutathione system in sleep disorders (literature review). Acta Biomedica Scientifica. 2020;5(6):133–143. [In Russian]. doi: 10.29413/ABS.2020-5.6.15
31. Rybakova L.P., Aleksanyan L.R., Kapustin S.I., Bessmeltsev S.S. Human oxidant-antioxidant system, role in the pathological process and its correction (literature review). Vestnik gematologii = Bulletin of Hematology. 2022;18(4):26–37. [In Russian].
32. Sies H., Klotz L.O., Sharov V.S., Assmann A., Briviba K. Protection against peroxynitrite by selenoproteins. Z. Naturforsch. C. J. Biosci. 1998;53(3-4):228– 232. doi: 10.1515/znc-1998-3-412
33. Bubnova N.V., Timofeeva N.Yu., Kostrova O.Yu., Struchko G.Yu., Kotelkina A.A., Samakina E.S. The biological role of selenium (literature review). Acta Medica Eurasica. 2023;(2):114–123. [In Russian]. doi: 10.47026/2413-4864-2023-2-114-123
34. Tasakova O.S., Golubtsova N.N., Gunin A.G. Biological role of thioredoxin-mediated intracellular signaling during physiological aging (literature review). Acta Medica Eurasica. 2023;(1):139–146. [In Russian]. doi: 10.47026/2413-4864-2023-1-139-146
35. Reeves M.A., Hoffmann P.R. The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci. 2009;66(15):2457–2478. doi: 10.1007/s00018-009-0032-4
36. Roman M., Jitaru P., Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6(1):25–54. doi: 10.1039/c3mt00185g
37. Handy D.E., Joseph J., Loscalzo J. Selenium, a micronutrient that modulates cardiovascular health via redox enzymology. Nutrients. 2021;13(9):3238. doi: 10.3390/nu13093238
38. Galasso M., Gambino S., Romanelli M.G., Donadelli M., Scupoli M.T. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radic. Biol. Med. 2021;172:264–272. doi: 10.1016/j.freeradbiomed.2021.06.010
39. Vlasova I.I. Peroxidase activity of human hemoproteins: keeping the fire under control. Molecules. 2018;23(10):2561. doi: 10.3390/molecules23102561
40. Kawabata T. Iron-induced oxidative stress in human diseases. Cells. 2022;11(14):2152. doi: 10.3390/cells11142152
41. Zimmerman M.T., Bayse C.A., Ramoutar R.R., Brumaghim J.L. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding. J. Inorg. Biochem. 2015;145:30–40. doi: 10.1016/j.jinorgbio.2014.12.020
42. Glade M.J., Meguid M.M. A glance at…antioxidant and antiinflammatory properties of dietary cobalt. Nutrition. 2018;46:62–66. doi: 10.1016/j.nut.2017.08.009
43. Darenskaya M.A., Rychkova L.V., Kolesnikov S.I., Kravtsova O.V., Semenova N.V., Brichagina A.S., Kolesnikova L.I. Changes in lipid peroxidation system during standard therapy for exogenous constitutional obesity in adolescents of different sex. Voprosy detskoy dietologii = Pediatric Nutrition. 2022;20(1):5–11. [In Russian]. doi: 10.20953/1727-5784-2022-1-5-11
44. Vivek S.M., Dayal D., Khaiwal R., Bharti B., Bhalla A., Singh S., Kaur H., Attri S.V. Low serum copper and zinc concentrations in North Indian children with overweight and obesity. Pediatr. Endocrinol. Diabetes Metab. 2020;26(2):79–83. doi: 10.5114/pedm.2020.95627
45. Petrukhina E.A., Nikolaeva N.A., Akopyan A.A. The microelement composition of the body in children with obesity. Byulleten’ meditsinskikh internet-konferentsiy = Bulletin of Medical Internet Conferences. 2021;11(3):50. [In Russian].
46. Tascilar M.E., Ozgen I.T., Abaci A., Serdar M., Aykut O. Trace elements in obese Turkish children. Biol. Trace Elem. Res. 2011;143(1):188–195. doi: 10.1007/s12011-010-8878-8
47. Castillo-Valenzuela O., Duarte L., Arredondo M., Iñiguez G., Villarroel L., Pérez-Bravo F. Childhood obesity and plasma micronutrient deficit of chilean children between 4 and 14 years old. Nutrients. 2023;15(7):1707. doi: 10.3390/nu15071707
48. Fan Y., Zhang C., Bu J. Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients. 2017;9(2):104. doi: 10.3390/nu9020104
49. Grabeklis A.R., Skalny A.V., Ajsuvakova O.P., Skalnaya A.A., Mazaletskaya A.L., Klochkova S.V., Chang S.J.S., Nikitjuk D.B., Skalnaya M.G., Tinkov A.A. A search for similar patterns in hair trace element and mineral content in children with down’s syndrome, obesity, and growth delay. Biol. Trace Elem. Res. 2020;196(2):607–617. doi: 10.1007/s12011-019-01938-6
50. Sharipova M.M., Ivkina M.V., Arkhangelskaya A.N., Gurevich K.G. Role of microelements in the development of endocrine pathology. Ekologiya cheloveka = Human Ecology. 2022;(11):753–760. [In Russian]. doi: 10.17816/humeco72102
51. Cayir A., Doneray H., Kurt N., Orbak Z., Kaya A., Turan M.I., Yildirim A. Thyroid functions and trace elements in pediatric patients with exogenous obesity. Biol. Trace Elem. Res. 2014;157(2):95–100. doi: 10.1007/s12011-013-9880-8
52. Escobedo-Monge M.F., Torres-Hinojal M.C., Barrado E., Escobedo-Monge M.A., Marugán-Miguelsanz J.M. Zinc nutritional status in a series of children with chronic diseases: a cross-sectional study. Nutrients. 2021;13(4):1121. doi: 10.3390/nu13041121
53. González-Domínguez Á., Millán-Martínez M., Domínguez-Riscart J., Lechuga-Sancho A.M., González-Domínguez R. Metal homeostasis and exposure in distinct phenotypic subtypes of insulin resistance among children with obesity. Nutrients. 2023;15(10):2347. doi: 10.3390/nu15102347
54. Nasab H., Rajabi S., Eghbalian M., Malakootian M., Hashemi M., Mahmoudi-Moghaddam H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere. 2022;294:133664. doi: 10.1016/j.chemosphere.2022.133664
55. Fontenelle L.C., Cardoso de Araújo D.S., da Cunha Soares T., Clímaco Cruz K.J., Henriques G.S., Marreiro D.D.N. Nutritional status of selenium in overweight and obesity: a systematic review and meta-analysis. Clin. Nutr. 2022;41(4):862–884. doi: 10.1016/j.clnu.2022.02.007
56. Błażewicz A., Szymańska I., Dolliver W., Suchocki P., Turło J., Makarewicz A., Skórzyńska-Dziduszko K. Are obese patients with autism spectrum disorder more likely to be selenium deficient? Research findings on preand post-pubertal children. Nutrients. 2020;12(11):3581. doi: 10.3390/nu12113581
57. Fontenelle L.C., de Paiva Sousa M., Dos Santos L.R., Cardoso B.E.P., de Sousa T.G.V., da Cunha Soares T., de Sousa Melo S.R., Morais J.B.S., da Silva Dias T.M., de Oliveira F.E., … do Nascimento Marreiro D. Relationship between selenium nutritional status and markers of low-grade chronic inflammation in obese women. Biol. Trace Elem. Res. 2023;201(2):663– 676. doi: 10.1007/s12011-022-03209-3
58. Zhu Y., He B., Xiao Y., Chen Y. Iron metabolism and its association with dyslipidemia risk in childrenand adolescents: a cross-sectional study. Lipids Health Dis. 2019;18(1):50. doi: 10.1186/s12944-019-0985-8
59. Doğan G., Andiran N., Çelik N., Uysal S. Iron parameters, pro-hepcidin and soluble transferrin receptor levels in obese children. Minerva Pediatr. 2020;72(3):175–181. doi: 10.23736/S0026-4946.16.04273-0
60. Giannini C., Polidori N., Saltarelli M.A., Chiarelli F., Basilico R., Mohn A. Increased hepcidin levels and non-alcoholic fatty liver disease in obese prepubertal children: a further piece to the complex puzzle of metabolic derangements. J. Pediatr. Endocrinol. Metab. 2021;35(1):39–47. doi: 10.1515/jpem-2021-0070
61. Suárez-Ortegón M.F., Echeverri I., Prats-Puig A., Bassols J., Carreras-Badosa G., López-Bermejo A., Fernández-Real J.M. Iron status and metabolically unhealthy obesity in prepubertal children. Obesity (Silver Spring). 2019;27(4):636–644. doi: 10.1002/oby.22425
62. Wei S., Zhang W., Wang C., Cao Y., Li L. Increased hepcidin expression in adipose tissue as a primary cause of obesity-related inhibition of iron absorption. J. Biol. Regul. Homeost. Agents. 2019;33(4):1135–1141.
63. Aka S., Kilercik M., Arapoglu M., Semiz S. The hepcidin and 25-OH-vitamin D levels in obese children as a potential mediator of the iron status. Clin. Lab. 2021;67(5):1154. doi: 10.7754/Clin.Lab.2020.200813
64. Ortíz Pérez M., Vázquez López M.A., Ibáñez Alcalde M., Galera Martínez R., Martín González M., Lendínez Molinos F., Bonillo Perales A. Relationship between obesity and iron deficiency in healthy adolescents. Child. Obes. 2020;16(6):440–447. doi: 10.1089/chi.2019.0276
65. Lesnaya A.S., Darenskaya M.A., Rychkova L.V., Semenova N.V., Nikitina O.A., Grebenkina L.A., Kravtsova O.V., Prokhorova Zh.V., Kolesnikova L.I. Gender-related characteristics of bioelement status in Siberian adolescents with obesity. Voprosy detskoy dietologii = Pediatric Nutrition. 2023;21(5):81–87. [In Russian]. doi: 10.20953/1727-5784-2023-5-81-87
66. Lesnaya A.S., Semenova N.V., Darenskaya M.A., Rychkova L.V., Balzhirova D.V., Kolesnikova L.I. Nitrosative stress in adolescents with exogenous constitutional obesity. Voprosy detskoy dietologii = Pediatric Nutrition. 2023;21(6):85–90. [In Russian]. doi: 10.20953/1727-5784-2023-6-85-90
Review
For citations:
Lesnaya A.S., Darenskaya M.A., Rychkova L.V., Semenova N.V., Prokhorova Zh.V., Shevchuk V.А., Kolesnikova L.I. The role of bioelements ‒ components of free radical oxidation ‒ in the genesis of childhood obesity. Сибирский научный медицинский журнал. 2024;44(5):24-34. (In Russ.) https://doi.org/10.18699/SSMJ20240503