Unraveling the intricacies of the gut-brain axis: from physiology to psychology and obesity
https://doi.org/10.18699/SSMJ20240502
Abstract
The human body, a marvel of complexity, operates through a network of interconnected systems that extend beyond the conventional confines of organs and tissues. Among the most intriguing and dynamic of these networks is the gut- brain axis (GBA), it was considered only for digestion, but in recent years GBA has evolved dramatically, uncovering its profound implications for both physical and mental well-being. Background: As scientific research continues to delve into the intricacies of this bidirectional pathway, a deeper understanding emerges of how the GBA impacts not only digestion and metabolism but also mental health and obesity. Material and methods. This article conducts a systematic review of current scientific literature to explore the intricate mechanisms and profound implications of the GBA on mental health and obesity. Results. Components of the GBA, including the enteric nervous system, vagus nerve, neurotransmitters, gut hormones, and gut microbiota, collectively orchestrate digestion, metabolism, mood, cognition, and behavior. Recent research elucidates the role of the GBA in neurotransmitter production, microbiota composition, immune function, stress response, and vagus nerve communication, highlighting its significance in mental well-being. Moreover, disruptions in the GBA contribute to alterations in appetite regulation, metabolism, and gut microbiota composition, linking it to the development and exacerbation of obesity. Conclusions. Understanding the intricate connections within the GBA provides a foundation for developing targeted interventions to promote holistic health and well-being. By recognizing the multifaceted nature of the GBA, individuals and healthcare professionals can explore innovative approaches to address mental health disorders, life style modification and obesity effectively.
About the Authors
S. R. KodidalaIndia
Satyanath Reddy Kodidala
577004, Karnataka, Davangere, M.C.C ’B’ Block
H. Kaur
India
Harminder Kaur
122505, Haryana, Gurugram, Gurgaon-Badli Road
S. Manjunath
India
Sunitha Manjunath
577004, Karnataka, Davangere, M.C.C ’B’ Block
G. R. Akula
India
Gangadhar Reddy Akula
518001, Nandyala, Andhra Pradesh, FCR9+VHQ, NH40
References
1. Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. J. Clin. Invest. 2015;125(3):926–938. doi: 10.1172/JCI76304
2. Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012;13(10):701–712. doi: 10.1038/nrn3346
3. Cummings D.E., Overduin J. Gastrointestinal regulation of food intake. J. Clin. Invest. 2007;117(1):13– 23. doi: 10.1172/JCI30227
4. Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., … Hart A. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–339. doi: 10.1136/gutjnl-2015-309990
5. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. doi: 10.1038/45230
6. Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–770. doi: 10.1038/27376
7. den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54(9):2325–2340. doi: 10.1194/jlr.R036012
8. Canfora E.E., Meex R.C.R., Venema K., Blaak E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019;15(5):261–273. doi: 10.1038/s41574-019-0156-z
9. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., Waget A., … Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi: 10.2337/db06-1491
10. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027
11. Mayer E.A., Naliboff B.D., Craig A.D. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology. 2006;131(6):1925–1942. doi: 10.1053/j.gastro.2006.10.026
12. Sarkar A., Lehto S.M., Harty S., Dinan T.G., Cryan J.F., Burnet P.W.J. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39(11):763–781. doi: 10.1016/j.tins.2016.09.002
13. Rook G.A., Lowry C.A., Raison C.L. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol. Med. Public Health. 2013;2013(1):46–64. doi: 10.1093/emph/eot004
14. Foster J.A., Rinaman L., Cryan J.F. Stress and the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress. 2017;7:124–136. doi: 10.1016/j.yn-str.2017.03.001
15. Breit S., Kupferberg A., Rogler G., Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry. 2018;9:44. doi: 10.3389/fpsyt.2018.00044
16. Berthoud H.R. The neurobiology of food intake in an obesogenic environment. Proc. Nutr. Soc. 2012;71(4):478–487. doi: 10.1017/S0029665112000602
17. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a
18. Arora T., Sharma R. Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutr. Rev. 2011;69(2):99– 106. doi: 10.1111/j.1753-4887.2010.00365.x
19. Björntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2001;2(2):73– 86. doi: 10.1046/j.1467-789x.2001.00027.x
20. Ryan K.K., Woods, S.C., Seeley R.J. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell. Metab. 2017;15(2):137–149. doi: 10.1016/j.cmet.2011.12.013
21. Guarner F., Malagelada J.R. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. doi: 10.1016/S0140-6736(03)12489-0
22. Rosenkranz M.A., Davidson R.J. Affective neural circuitry and mind–body influences in functional gastrointestinal disorders. Neurogastroenterol. Motil. 2009;21(4):381–387. doi: 10.1111/j.1365-2982.2009.01250.x
23. Monda V., Villano I., Messina A., Valenzano A., Esposito T., Moscatelli F., Viggiano A., Cibelli G., Chieffi S., Monda M., Messina G. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev. 2017;2017:3831972. doi: 10.1155/2017/3831972
24. Irwin M.R., Vitiello M.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 2019;18(3):296–306. doi: 10.1016/S1474-4422(18)30450-2
25. Warren J.M., Smith N., Ashwell M. A structured literature review on the role of mindfulness, mindful eating and intuitive eating in changing eating behaviours: effectiveness and associated potential mechanisms. Nutr. Res. Rev. 2017;30(2):272–283. doi: 10.1017/S0954422417000154