Preview

Сибирский научный медицинский журнал

Advanced search

Postprandial glycemic response to isocaloric protein load in men with different types of fat distribution

https://doi.org/10.18699/SSMJ20240421

Abstract

Aim of the study was to quantify postprandial glucose levels in response to isocaloric protein load at main meals in men with different types of fat distribution. Material and methods. The study enrolled men aged 25 to 65 years. Group 1 (n = 17) consisted of obese men with subcutaneous fat distribution (SFD) type while group 2 (n = 16) was represented by obese men with abdominal type of fat distribution (AFD). Group 3 (comparators) consisted of 10 men with normal body weight (NBW). Glycemic response to standard isocaloric protein load was assessed by the results of glucose levels within 3 hours starting 5 minutes after end of food consumption on different days and mealtime. Standard protein lunch was introduced during the second day while standard protein dinner and breakfast were performed at the third and fourth days respectively. Results. It was found that protein intake leads to neither pronounced postprandial glycemic fluctuations nor decrease in glucose levels by the end of the 3rd hour of the test. Accordingly, it also doesn’t provoke hunger, unlike carbohydrate intake does. In men with NBW a more pronounced increase in glucose level after protein meal was found, both relative to the baseline levels and comparing with men from SFD and AFD groups. In NBW group at lunchtime and especially in the evening a double-humped glycemic curve was noted. Glycemic variability in men with different types of fat distribution was characterized by the fact that glycemic increment was more pronounced in men with AFD than in men with SFD whose glycemic curve was almost flat after all meals. Conclusions. Protein intake in men with NBW and different types of fat distribution does not lead to significant changes in postprandial glucose levels. Glycemic fluctuations don’t exceed 1 mmol/L within a 3-hour period after consuming of isocaloric breakfast, lunch or dinner. Protein intake results in greater postprandial glucose levels in men with AFD than in SFD men.

About the Authors

M. Yu. Sorokin
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Maxim Yu. Sorokin

630117, Novosibirsk, Timakova st., 2



B. B. Pinkhasov
Federal Research Center of Fundamental and Translational Medicine; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Boris B. Pinkhasov, doctor of medical sciences

630117, Novosibirsk, Timakova st., 2

630091, Novosibirsk, Krasny ave., 52



V. G. Selyatitskaya
Federal Research Center of Fundamental and Translational Medicine
Russian Federation

Vera G. Selyatitskaya, doctor of biological sciences, professor

630117, Novosibirsk, Timakova st., 2



References

1. Kim R., Lee D.H., Subramanian S.V. Understanding the obesity epidemic. BMJ. 2019;366(7):l4409. doi: 10.1136/bmj.l4409

2. d’Innocenzo S., Biagi C., Lanari M. Obesity and the mediterranean diet: A review of evidence of the role and sustainability of the mediterranean diet. Nutrient. 2019;11(6):1306. doi: 10.3390/nu11061306

3. Guh D.P., Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88

4. Drozdz D., Alvarez-Pitti J., Wójcik M., Borghi C., Gabbianelli R., Mazur A., Herceg-Čavrak V., Lopez-Valcarcel B.G., Brzeziński M., Lurbe E., Wühl E. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients. 2021;13:4176. doi: 10.3390/nu13114176

5. de Pergola G., Silvestris F. Obesity as a major risk factor for cancer. J. Obes. 2013;2013:291546. doi: 10.1155/2013/291546

6. Widmer R.J., Flammer A.J., Lerman L.O., Lerman A. The mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015;128(3):229– 238. doi: 10.1016/j.amjmed.2014.10.014

7. Martinez-Lacoba R., Pardo-Garcia I., AmoSaus E., Escribano-Sotos F. Mediterranean diet and health outcomes: a systematic meta-review. Eur. J. Public Health. 2018;28(5):955–961. doi: 10.1093/eurpub/cky113

8. Moon J., Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J. Obes. Metab. Syndr. 2020;29(3):166–173. doi: 10.7570/jomes20028

9. Chao A.M., Quigley K.M., Wadden T.A. Dietary interventions for obesity: clinical and mechanistic findings. J. Clin. Invest. 2021;131(1):e14006. doi: 10.1172/JCI140065

10. Jakubowicz D., Wainstein J., Tsameret S., Landau Z. Role of high energy breakfast “big breakfast diet” in clock gene regulation of postprandial hyperglycemia and weight loss in type 2 diabetes. Nutrients. 2021;13(5):1558. doi: 10.3390/nu13051558

11. Zhu J., Han J., Liu L., Liu Y., Xu W., Li X., Yang L., Gu Y., Tang W., Shi Y., … Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2023;197:110568. doi: 10.1016/j.diabres.2023.110568

12. Shahim B., de Bacquer D., de Backer G., Gyberg V., Kotseva K., Mellbin L., Schnell O., Tuomilehto J., Wood D., Ryden L. The prognostic value of fasting plasma glucose, two-hour postload glucose, and HbA1c in patients with coronary artery disease: A report from EUROASPIRE IV. Diabetes Care. 2017;40(9):1233–1240. doi: 10.2337/dc17-0245

13. Manoogian E.N.C., Chow L.S., Taub P.R., Laferrere B., Panda S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr. Rev. 2022;43(2):405–436. doi: 10.1210/endrev/bnab027

14. ElSayed N.A., Aleppo G., Aroda V.R., Bannuru R.R., Brown F.M., Bruemmer D., Collins B.S., Hilliard M.E., Isaacs D., Johnson E.L., Kahan S., Khunti K., Leon J., Lyons S.K., Perry M.L., Prahalad P., Pratley R.E., Seley J.J., Stanton R.C., … Gabbay R.A. on behalf of the American Diabetes Association. Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care. 2023;46(Suppl 1):19–40. doi: 10.2337/dc23-S002

15. Walther B., Lett A.M., Bordoni A., Tomas-Cobos L., Nieto J.A., Dupont D., Danesi F., Shahar D.R., Echaniz A., Re R., Fernandex A.S., Deglaire A., Gille D., Schmid A., … Vergeres G. GutSelf: Interindividual variability in the processing of dietary compounds by the human gastrointestinal tract. Mol. Nutr. Food Res. 2019;63(21):e1900677. doi: 10.1002/mnfr.201900677

16. Klimontov V.V., Myakina N.E. Glycemia variability in diabetes mellitus. Novosibirsk, 2016. 252 p. [In Russian].

17. Gannon M.C., Nuttall F.Q. Amino acid ingestion and glucose metabolism – a review. IUBMB life. 2010;62(9):660–668. doi: 10.1002/iub.375

18. Acheson K.J., Blondel-Lubrano A., OgueyAraymon S., Beaumont M., Emady-Azar S., Ammon-Zufferey C., Monnard I., Pinaud S., NielsenMoennoz C., Bovetto L. Protein choices targeting thermogenesis and metabolism. Am. J. Clin. Nutr. 2011;93(3):525–534. doi: 10.3945/ajcn.110.005850

19. Nilsson M., Stenberg M., Frid A.H., Holst J.J., Bjorck I.M.E. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am. J. Clin. Nutr. 2004;80(5):1246–1253. doi: 10.1093/ajcn/80.5.1246

20. Jakubowicz D., Froy O. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J. Nutr. Biochem. 2013;24(1):1–5. doi: 10.1016/j.jnutbio.2012.07.008

21. Pinkhasov B.B., Selyatitskaya V.G., Astrakhantseva E.L., Anufrienko E.V. Circadian rhythms of carbohydrate metabolism in women with different types of obesity. Bull. Exp. Biol. Med. 2016;161(3):323–326. doi: 10.1007/s10517-016-3406-2

22. Gillespie A.L., Calderwood D., Hobson L., Green B.D. Whey proteins have beneficial effects on intestinal enteroendocrine cells stimulating cell growth and increasing the production and secretion of incretin hormones. Food Chem. 2015;189:120–128. doi: 10.1016/j.foodchem.2015.02.022

23. Tay J., Thompson C.H., Brinkworth G.D. Glycemic variability: assessing glycemia differently and the implications for dietary management of diabetes. Annu. Rev. Nutr. 2015;35:389–424. doi: 10.1146/annurev-nutr-121214-104422

24. Gunnerud U.J., Heinzle C., Holst J.J., Ostman E.M., Björck I.M. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One. 2012;7(9):e44731. doi: 10.1371/journal.pone.0044731

25. Gunnerud U.J., Ostman E.M., Björck I.M.E. Effects of whey proteins on glycaemia and insulinaemia to an oral glucose load in healthy adults; a doseresponse study. Eur. J. Clin. Nutr. 2013;67(7):749–753. doi: 10.1038/ejcn.2013.88

26. Salehi A., Gunnerud U., Muhammed S.J., Ostman E., Holst J.J., Bjorck I., Rorsman P. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr. Metab. (Lond). 2012;9(1):48. doi: 10.1186/1743-7075-9-48

27. Gijsbers L., Ding E.L., Malik V.S., de Goede J., Geleijnse J.M., Soedamah-Muthu S.S. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016;103(4):1111–1124. doi: 10.3945/ajcn.115.123216

28. Rice B.H. Dairy and cardiovascular disease: a review of recent observational research. Curr. Nutr. Rep. 2014;3(2):130–138. doi: 10.1007/s13668-014-0076-4

29. Thorning T.K., Bertram H.C., Bonjour J.P., de Groot L., Dupont D., Feeney E., Ipsen R., Lecerf J.M., Mackie A., McKinley M.C., … Givens I. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge Gaps. Am. J. Clin. Nutr. 2017;105(5):1033–1045. doi: 10.3945/ ajcn.116.151548


Review

Views: 884


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)