Preview

Сибирский научный медицинский журнал

Advanced search

Association of the vitamin D metabolism gene polymorphism with the severity of coronary lesions assessed by SYNTAX score

https://doi.org/10.18699/SSMJ20240410

Abstract

This study aimed to determine the association of vitamin D serum blood levels and vitamin D gene polymorphism with the severity of coronary lesions in patients with stable coronary artery disease (CAD). Material and methods. 260 patients with stable CAD (average age was 58 years) were examined in the presented research. All patients were divided into two groups according to the SYNTAX score: low-risk patients with SYNTAX score ≤ 31 (n = 224) and high-risk patients with SYNTAX score > 31 (n = 36). For enzyme-linked immunosorbent assay and genetic analysis, peripheral blood was collected from the cubital vein into vacuum tubes containing coagulation activator and K3-EDTA, respectively. Serum blood level of 25-hydroxyvitamin D (DiaSource Diagnostics, Belgium) and 1,25-dihydroxyvitamin D (Immunodiagnostic Systems, Great Britain) were determined by enzyme-linked immunosorbent assay according to the manufacturers’ protocols. Genomic DNA was isolated by phenol-chloroform extraction method from whole blood. The quality and quantity of isolated DNA were assessed using NanoDrop spectrophotometer (Thermo Fisher Scientific, USA). Five polymorphic variants in the VDR (rs2228570 and rs73123) and GC (rs7041, rs1155563 and rs2298849) genes were selected for analysis. Genotyping was performed by real-time PCR in a 96-well plate with fluorescently labeled TaqMan probes. The quality of PCR was controlled by repeated genotyping of 10 % of the analyzed samples. Results. We found no statistically significant differences in serum blood level of the studied markers in patients from low-risk and high-risk groups. One polymorphic variant in the GC gene associated with the multiple coronary lesions (rs2298849) (odds ratio 2.26, 95 % confidence interval 1.28–3.99, p = 0.006) according to an additive inheritance model was identified. In addition, we determined the association between low serum blood level of 1,25-dihydroxyvitamin D in patients with CAD with multiple lesions of the coronary vascular system with A/A – A/G genotypes of the rs2228570 polymorphism in the VDR gene, A/A genotype of the rs7041 polymorphism and A/A genotype of the rs2298849 polymorphism in the GC gene. Conclusions. Allelic variants in the vitamin D metabolism genes are associated with the degree of coronary artery lesions assessed by the SYNTAX score in patients with stable CAD. Also, serum blood level of the active form of vitamin D (1,25-dihydroxyvitamin D) is less in carriers of homozygous genotypes for the major alleles of the VDR and GC genes.

About the Authors

A. V. Ponasenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anastasia V. Ponasenko, candidate of medical sciences

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



A. V. Sinitskaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anna V. Sinitskaya, candidate of biological sciences

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



M. Yu. Sinitsky
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Maxim Yu. Sinitsky, candidate of biological sciences

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



M. K. Khutornaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Mariya V. Khutornaya

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



M. K. Duvanov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Maxim K. Duvanov

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



O. L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Olga L. Barbarash, doctor of medical sciences, academician of the RAS

650002, Kemerovo, Academician L.S. Barbarasha blvd., 6



References

1. Malakar A.K., Choudhury D., Halder B., Paul P., Uddin A., Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 2019;234(10):16812–16823. doi: 10.1002/jcp.28350

2. Mikhalina E.V., Mulerova T.A., Polikutina O.M., Ogarkov M.Yu. Prevalence of coronary artery isease in the indigenous population of Gornaya Shoria (the results of epidemiological studies in 1998-2001 and 2013-2017). Kompleksnyye problemy serdechno-sosudistykh zabolevaniy = Complex Issues of Cardiovascular Diseases. 2019;8(4S):15–21. [In Russian]. doi: 10.17802/2306-1278-2019-8-4S-15-21

3. Ralapanawa U., Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review. J. Epidemiol. Glob. Health. 2021;11(2):169–177. doi: 10.2991/jegh.k.201217.001

4. Duggan J.P., Peters A.S., Trachiotis G.D., Antevil J.L. Epidemiology of coronary artery disease. Surg. Clin. North Am. 2022;102(3):499–516. doi: 10.1016/j.suc.2022.01.007

5. Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., … WTCCC and the Cardiogenics Consortium. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007;357(5):443–453. doi: 10.1056/NEJMoa072366

6. Reilly M.P., Li M., He J., Ferguson J.F., Stylianou I.M., Mehta N.N., Burnett M.S., Devaney J.M., Knouff C.W., Thompson J.R., … Rader D.J. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet. 2011;377(9763):383–392. doi: 10.1016/S0140- 6736(10)61996-4

7. Centers for Disease Control and Prevention (CDC). Prevalence of coronary heart disease – United States, 2006–2010. MMWR Morb. Mortal. Wkly. Rep. 2011;60(40):1377–1381.

8. Nafisa A., Gray S.G., Cao Y., Wang T., Xu S., Wattoo F.H., Barras M., Cohen N., Kamato D., Little P.J. Endothelial function and dysfunction: Impact of metformin. Pharmacol. Ther. 2018;192:150–162. doi: 10.1016/j.pharmthera.2018.07.007

9. Silva I.V.G., de Figueiredo R.C., Rios D.R.A. Effect of different classes of antihypertensive drugs on endothelial function and inflammation. Int. J. Mol. Sci. 2019;20(4):3458. doi: 10.3390/ijms20143458

10. Manousaki D., Mokry L.E., Ross S., Goltzman D., Richard J.B. Mendelian randomization studies do not support a role for vitamin D in coronary artery disease. Circ. Cardiovasc. Genet. 2016;9(4):349–356. doi: 10.1161/CIRCGENETICS.116.001396

11. Jorge A.J.L., Cordeiro J.R., Rosa M.L.G., Bianchi D.B.C. Vitamin D deficiency and cardiovascular diseases. Int. J. Cardiovasc. Sci. 2018;31(4):422–424. doi: 10.5935/2359-4802.20180025

12. Kheiri B., Abdalla A., Osman M., Ahmed S., Hassan M., Bachuwa G. Correction to: vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin. Hypertens. 2018;24(24):19. doi: 10.1186/s40885-018-0105-5

13. Legarth C., Grimm D., Kruger M., Infanger M., Wehland M. Potential beneficial effects of vitamin D in coronary artery disease. Nutrients. 2019;12(1):99. doi: 10.3390/nu12010099

14. Renke G., Starling-Soares B., Baesso T., Petronio R., Aguiar D., Paes R. Effects of vitamin D on cardiovascular risk and oxidative stress. Nutrients. 2023;15(3):769. doi: 10.3390/nu15030769

15. Al Mheid I., Patel R.S., Tangpricha V., Quyyumi A.A. Vitamin D and cardiovascular disease: is the evidence solid? Eur. Heart J. 2013;34(48):3691–3698. doi: 10.1093/eurheartj/eht166

16. Saghir Afifeh A.M., Verdoia M., Nardin M., Negro F., Viglione F., Rolla R., de Luca G.; Novara Atherosclerosis Study Group (NAS). Determinants of vitamin D activation in patients with acute coronary syndromes and its correlation with inflammatory markers. Nutr. Metab. Cardiovasc. Dis. 2021;31(1):36–43. doi: 10.1016/j.numecd.2020.09.021

17. Norman P.E., Powell J.T. Vitamin D and cardiovascular disease. Circ. Res. 2014;114(2):379–393. doi: 10.1161/CIRCRESAHA.113.301241

18. Ahmad M.I., Chevli P.A., Li Y., Soliman E.Z. Vitamin D deficiency and electrocardiographic subclinical myocardial injury: Results from National Health and Nutrition Examination Survey-III. Clin. Cardiol. 2018;41(11):1468–1473. doi: 10.1002/clc.23078

19. Chen S., Swier V.J., Boosani C.S., Radwan M.M., Agrawal D.K. Vitamin D deficiency accelerates coronary artery disease progression in swine. Arterioscler. Thromb. Vasc. Biol. 2016;36(8):1651–1659. doi: 10.1161/ATVBAHA.116.307586

20. Boisvert W.A., Curtiss L.K., Terkeltaub R.A. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol. Res. 2000;21(2-3):129–137. doi: 10.1385/ ir:21:2-3:129

21. Owen M.K., Noblet J.N., Sassoon D.J., Conteh A.M., Goodwill A.G., Tune J.D. Perivascular adipose tissue and coronary vascular disease. Arterioscler. Thromb. Vasc. Biol. 2014;34(8):1643–1649. doi: 10.1161/ATVBAHA.114.303033

22. Fatkhullina A.R., Peshkova I.O., Koltsova E.K. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc). 2016;81(11):1358–1370. doi: 10.1134/S0006297916110134

23. Sun X., Icli B., Wara A.K., Belkin N., He S., Kobzik L., Hunninghake G.M., Vera M.P., Blackwell T.S., Baron R.M., Feinberg M.W. Microrna-181b regulates NF-kappab-mediated vascular inflammation. J. Clin. Investig. 2012;122(6):1973–1990. doi: 10.1172/JCI61495

24. Leonard A., Rahman A., Fazal F. Importins alpha and beta signaling mediates endothelial cell inflammation and barrier disruption. Cell. Signal. 2018;44:103–117. doi: 10.1016/j.cellsig.2018.01.011

25. Kim D.H., Meza C.A., Clarke H., Kim J.S., Hickner R.C. Vitamin D and endothelial function. Nutrients. 2020;12(2):575. doi: 10.3390/nu12020575

26. Dorsch M.P., Nemerovski C.W., Ellingrod V.L., Cowger J.A., Dyke D.B., Koelling T.M., Wu A.H., Aaronson K.D., Simpson R.U., Bleske B.E. Vitamin D receptor genetics on extracellular matrix biomarkers and hemodynamics in systolic heart failure. J. Cardiovasc. Pharmacol. Ther. 2014;19(5):439–445. doi: 10.1177/1074248413517747

27. Lin C.H., Chen K.H., Chen M.L., Lin H.I., Wu R.M. Vitamin D receptor genetic variants and Parkinsons disease in a Taiwanese population. Neurobiol. Aging. 2014;35(5):1212.e11–3. doi: 10.1016/j.neurobiolaging.2013.10.094

28. Rivera-Leon E.A., Palmeros-Sanchez B., Llamas-Covarrubias I.M., Fernandez S., Armendariz-Borunda J., Gonzalez-Hita M., Bastidas-Ramirez B.E., Zepeda-Moreno A., Sanchez-Enriquez S. Vitamin-D receptor gene polymorphisms (TaqI and ApaI) and circulating osteocalcin in type 2 diabetic patients and healthy subjects. Endokrynol. Pol. 2015;66(4):329–333. doi: 10.5603/EP.2015.0042

29. Ionova Zh.I., Sergeeva E.G., Berkovich O.A. Genetic and epigenetic factors regulating the expression and function of the vitamin D receptor in patients with coronary artery disease. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2021;26(S1):4251. [In Russian]. doi: 10.15829/1560-4071-2021-4251

30. Kulsoom U., Khan A., Saghir T., Nawab S.N., Tabassum A., Fatima S., Saleem S., Zehra S. Vitamin D receptor gene polymorphism TaqI (rs731236) and its association with the susceptibility to coronary artery disease among Pakistani population. J. Gene Med. 2021;23(12):e3386. doi: 10.1002/jgm.3386

31. Raljević D., Peršić V., Markova-Car E., Cindrić L., Miškulin R., Žuvić M., Kraljević Pavelić S. Study of vitamin D receptor gene polymorphisms in a cohort of myocardial infarction patients with coronary artery disease. BMC Cardiovasc. Disord. 2021;21(1):188. doi: 10.1186/s12872-021-01959-x

32. González Rojo P., Pérez Ramírez C., Gálvez Navas J.M., Pineda Lancheros L.E., Rojo Tolosa S., Ramírez Tortosa M.D.C., Jiménez Morales A. Vitamin D-related single nucleotide polymorphisms as risk biomarker of cardiovascular disease. Int. J. Mol. Sci. 2022;23(15):8686. doi: 10.3390/ijms23158686

33. Akhlaghi B., Firouzabadi N., Foroughinia F., Nikparvar M., Dehghani P. Impact of vitamin D receptor gene polymorphisms (TaqI and BsmI) on the incidence and severity of coronary artery disease: a report from southern Iran. BMC Cardiovasc. Disord. 2023;23(1):113. doi: 10.1186/s12872-023-03155-5

34. Kiani A., Mohamadi-Nori E., Vaisi-Raygani A., Tanhapour M., Elahi-Rad S., Bahrehmand F., Rahimi Z., Pourmotabbed T. Vitamin D-binding protein and vitamin D receptor genotypes and 25-hydroxyvitamin D levels are associated with development of aortic and mitral valve calcification and coronary artery diseases. Mol. Biol. Rep. 2019;46(5):5225–5236. doi: 10.1007/s11033-019-04979-1

35. Fronczek M., Strzelczyk J.K., Osadnik T., Biernacki K., Ostrowska Z. VDR gene polymorphisms in healthy individuals with family history of premature coronary artery disease. Dis. Markers. 2021;2021:8832478. doi: 10.1155/2021/8832478

36. Tabaei S., Motallebnezhad M., Tabaee S.S. Vitamin D receptor (VDR) gene polymorphisms and risk of coronary artery disease (CAD): systematic review and meta-analysis. Biochem. Genet. 2021;59(4):813– 836. doi: 10.1007/s10528-021-10038-x

37. Yan X., Wei Y., Wang D., Zhao J., Zhu K., Liu Y., Tao H. Four common vitamin D receptor polymorphisms and coronary artery disease susceptibility: A trial sequential analysis. PLoS One. 2022;17(10):e0275368. doi: 10.1371/journal.pone.0275368

38. Usategui-Martín R., de Luis-Román D.A., Fernández-Gómez J.M., Ruiz-Mambrilla M., PérezCastrillón J.L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: a systematic review and meta-analysis. Nutrients. 2022;14(2):360. doi: 10.3390/nu14020360

39. Abdella N.A., Mojiminiyi O.A. Vitamin Dbinding protein clearance ratio is significantly associated with glycemic status and diabetes complications in a predominantly vitamin D-deficient population. J. Diabetes Res. 2018;2018:6239158. doi: 10.1155/2018/6239158

40. Thrailkill K.M., Jo C.H., Cockrell G.E., Moreau C.S., Fowlkes J.L. Enhanced excretion of vitamin D binding protein in type 1 diabetes: a role in vitamin D deficiency? J. Clin. Endocrinol. Metab. 2011;96(1):142–149. doi: 10.1210/jc.2010-0980

41. Norman P.E., Powell J.T. Vitamin D, shedding light on the development of disease in peripheral arteries. Arterioscler. Thromb. Vasc. Biol. 2005:25(1):39– 46. doi: 10.1161/01.ATV.0000148450.56697.4a

42. Lu S., Guo S., Hu F., Guo Y., Yan L., Ma W., Wang Y., Wei Y., Zhang Z., Wang Z. The associations between the polymorphisms of vitamin D receptor and coronary artery disease: a systematic review and metaanalysis. Medicine (Baltimore), 2016;95(21):e3467. doi: 10.1097/MD.0000000000003467

43. Amadori D., Serra P., Masalu N., Pangan A., Scarpi E., Bugingo A.M., Katabalo D., Ibrahim T., Bongiovanni A., Miserocchi G., … Mercatali L. Vitamin D receptor polymorphisms or serum levels as key drivers of breast cancer development? The question of the vitamin D pathway. Oncotarget. 2017;8(8):13142–13156. doi: 10.18632/oncotarget.14482


Review

For citations:


Ponasenko A.V., Sinitskaya A.V., Sinitsky M.Yu., Khutornaya M.K., Duvanov M.K., Barbarash O.L. Association of the vitamin D metabolism gene polymorphism with the severity of coronary lesions assessed by SYNTAX score. Сибирский научный медицинский журнал. 2024;44(4):96-104. (In Russ.) https://doi.org/10.18699/SSMJ20240410

Views: 686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)