1. Российские клинические рекомендации. Ревматология. Ред. Е.Л. Насонов. М.: ГЭОТАРМедиа, 2019. 448 с.
2. Эрдес Ш.Ф., Сахарова К.В. Клиническая картина анкилозирующего спондилита у позитивных и негативных по HLA-B27 больных. Соврем. ревматол. 2023;17(5):61-66. https://doi.org/10.14412/1996-7012-2023-5-61-66
3. Xiong Y., Cai M., Xu Y., Dong P., Chen H., He W., Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front. Immunol. 2022;13:996103. https://doi.org/10.3389/fimmu.2022.996103
4. Bai Y., Zhao N., Sun H., Yin L., Chen J., Hu N. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility in HLA-B27 positive population: a Meta-analysis and bioinformatics analysis. Nucleosides Nucleotides Nucleic Acids. 2022;41(4):407-418. https://doi.org/10.1080/15257770.2022.2036344
5. Kenyon M., Maguire S., Rueda Pujol A., O’Shea F., McManus R. The genetic backbone of ankylosing spondylitis: how knowledge of genetic susceptibility informs our understanding and management of disease. Rheumatol. Int. 2022;42(12):2085-2095. https://doi.org/10.1007/s00296-022-05174-5
6. Lorente E., Fontela M.G., Barnea E., Martín-Galiano A.J., Mir C., Galocha B., Admon A., Lauzurica P., López D. Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2). Mol. Cell. Proteomics. 2020;19(6):994-1004. https://doi.org/10.1074/mcp.RA120.002014
7. Smith J.A. The role of the unfolded protein response in axial spondyloarthritis. Clin. Rheumatol. 2016;35(6):1425-1431. https://doi.org/10.1007/s10067-015-3117-5
8. Lejon K., Hellman U., Do L., Kumar A., Forsblad-d’Elia H. Increased proportions of inflammatory T cells and their correlations with cytokines and clinical parameters in patients with ankylosing spondylitis from northern Sweden. Scand. J. Immunol. 2022;96(3):e13190. https://doi.org/10.1111/sji.13190
9. Shesternya P.A., Savchenko A.A., Gritsenko O.D., Vasileva A.O., Kudryavtsev I.V., Masterova A.A., Isakov D.V., Borisov A.G. Features of peripheral blood th-cell subset composition and serum cytokine level in patients with activity-driven ankylosing spondylitis. Pharmaceuticals (Basel). 2022;15(11):1370.
10. Peng J., Gong Y., Zhang Y., Wang D., Xiao Z. Immunohistological analysis of active sacroiliitis in patients with axial spondyloarthritis. Medicine (Baltimore). 2017;96(16):e6605. https://doi.org/10.1097/MD.0000000000006605
11. Wilbrink R., Spoorenberg A., Verstappen G.M.P.J., Kroese F.G.M. B cell involvement in the pathogenesis of ankylosing spondylitis. Int. J. Mol. Sci. 2021;22(24):13325. https://doi.org/10.3390/ijms222413325
12. Gong F., Zheng T., Zhou P. T Follicular helper cell subsets and the associated cytokine IL-21 in the pathogenesis and therapy of asthma. Front. Immunol. 2019;10:2918. https://doi.org/10.3389/fimmu.2019.02918
13. Kurata I., Matsumoto I., Sumida T. T-follicular helper cell subsets: a potential key player in autoimmunity. Immunol. Med. 2021;44(1):1-9. https://doi.org/10.1080/25785826.2020.1776079
14. van der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361-368. https://doi.org/10.1002/art.1780270401
15. Machado P.M., Landewé R., Heijde D.V., Assessment of SpondyloArthritis international Society (ASAS). Ankylosing Spondylitis Disease Activity Score (ASDAS): 2018 update of the nomenclature for disease activity states. Ann. Rheum. Dis. 2018;77(10):1539-1540. https://doi.org/10.1136/annrheumdis-2018-213184
16. Golovkin A., Kalinina O., Bezrukikh V., Aquino A., Zaikova E., Karonova T., Melnik O., Vasilieva E., Kudryavtsev I. Imbalanced immune response of T-cell and B-cell subsets in patients with moderate and severe COVID-19. Viruses. 2021;13(10):1966. https://doi.org/10.3390/v13101966
17. Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., … Totolian A.A. Alterations in B cell and follicular T-helper cell subsets in patients with acute COVID-19 and COVID-19 convalescents. Curr. Issues Mol. Biol. 2022;44(1):194-205. https://doi.org/10.3390/cimb44010014
18. Bohnhorst J.O., Thoen J.E., Natvig J.B., Thompson K.M. Significantly depressed percentage of CD27+ (memory) B cells among peripheral blood B cells in patients with primary Sjögren’s syndrome. Scand. J. Immunol. 2001;54(4):421-427. https://doi.org/10.1046/j.1365-3083.2001.00989.x
19. Sanz I., Wei C., Lee F.E., Anolik J. Phenotypic and functional heterogeneity of human memory B cells. Semin. Immunol. 2008;20(1):67-82. https://doi.org/10.1016/j.smim.2007.12.006
20. Shen F., Shen Y., Xu Y., Zhao J., Zhao Z., Liu J., Ge Y. Dysregulation of circulating T follicular helper cell subsets and their potential role in the pathogenesis of syphilis. Front. Immunol. 2023;14:1264508. https://doi.org/10.3389/fimmu.2023.1264508
21. Wang Y., Liu J., Burrows P.D., Wang J.Y. B cell development and maturation. Adv. Exp. Med. Biol. 2020;1254:1-22. https://doi.org/10.1007/978-981-15-3532-1_1
22. Beckers L., Somers V., Fraussen J. IgD-CD27-double negative (DN) B cells: Origins and functions in health and disease. Immunol. Lett. 2023;255:67-76. https://doi.org/10.1016/j.imlet.2023.03.003
23. Савченко А.А., Гриценко О.Д., Борисов А.Г., Кудрявцев И.В., Серебрякова М.К., Мастерова А.А., Шестерня П.А. Особенности субпопуляционного состава Т-лимфоцитов у больных анкилозирующим спондилитом на фоне генно-инженерной биологической терапии. Мед. иммунол. 2021;23(6):1319-1332. https://doi.org/10.15789/1563-0625-FOT-2349