Comparative morphological analysis of connective tissue response to polypropylene endoprosthesis implantation
https://doi.org/10.18699/SSMJ20240314
Abstract
Nowadays, the palm of superiority in elective surgery belongs to the problem of hernias. According to the literature worldwide, more than 20 million patients undergo surgical treatment for hernia of the anterior abdominal wall every year, most of whom undergo alloplasty using various kinds of nets. The study of the influence of methods for fixing implants and the emerging local inflammatory response of tissues on the frequency of relapses after allognioplasty is devoted to isolated works. Aim of the study was to investigate in an experiment the characteristics of the reaction of local tissues when implanting a rigid monofilament mesh polypropylene implant with a shape memory effect, and a classic mesh endoprosthesis made of monofilament polypropylene (PP) with various methods of fixing implants. Material and methods. An experimental study on 60 white male Wistar rats was performed to identify tissue reaction features around the PP mesh. Group 1 animals (n = 30) were implanted with a rigid mesh monofilament PP implant (Herniamesh, Italy) with shape memory effect, group 2 animals (n = 30) – with a classic mesh endoprosthesis made of monofilament PP for soft tissue repair ESFIL® standard (Lintex, Russia). Biopsies were examined at 1, 2, 3 months after implantation of the PP mesh. Results. A morphological study showed that 1 month after the implantation of a rigid mesh monofilament PP implant, the inflammatory reaction is less obvious than when implanting a classical PP endoprosthesis. This reaction contributed to the earlier germination of collagen fibers around the rigid implant monofilaments. At 2 and 3 months after the implantation of PP nets in both groups of animals, there were no advantages as the regenerate formed. Conclusions. When introducing PP mesh with suture fixation and rigid monofilament PP mesh without fixation, there is a natural response to the integration of the endoprosthesis, which is characterized by aseptic inflammation followed by pronounced fibrosis around the implant. Such processes, occurring in response to the implantation of synthetic polypropylene nets, increase local mechanical tissue resistance, and can create additional strength against recurrence of inguinal hernias.
About the Authors
Kh. A. AbduvosidovRussian Federation
Khurshed A. Abduvosidov, doctor of medical sciences
125080, Moscow, Volokolamskoe highw., 11;
111123, Moscow, Enthuziastov highw., 86;
170000, Tver, Sovetskay st., 4
V. G. Shestakova
Russian Federation
Valeriya G. Shestakova, doctor of medical sciences
170000, Tver, Sovetskay st., 4
A. M. Perevedentseva
Russian Federation
Anna M. Perevedentseva
111123, Moscow, Enthuziastov highw., 86;
109386, Moscow, Stavropolskaya st., 23, b. 1
I. A. Chekmareva
Russian Federation
Irina A. Chekmareva, doctor of biological sciences
117997, Moscow, Bolshaya Serpukhovskaya st., 27
S. M. Chudnykh
Russian Federation
Sergey M. Chudnykh, doctor of medical sciences, professor
111123, Moscow, Enthuziastov highw., 86
L. M. Baranchugova
Russian Federation
Larisa M. Baranchugova, candidate of medical sciences
125080, Moscow, Volokolamskoe highw., 11
A. G. Alekseev
Russian Federation
Alexandr G. Alekseev, candidate of medical sciences
125080, Moscow, Volokolamskoe highw., 11
M. M. Kokoev
Russian Federation
Mikhail M. Kokoev
127006, Moscow, Dolgorukovskaya st., 4
References
1. Rodríguez M., Gómez-Gil V., Pérez-Köhler B., Pascual G., Bellón J.M. Polymer hernia repair materials: adapting to patient needs and surgical techniques. Materials (Basel). 2021;14(11):2790. doi: 10.3390/ma14112790
2. Qiao Y., Li Y., Zhang Q., Wang Q., Gao J., Wang L. Dopamine-mediated zwitterionic polyelectrolyte-coated polypropylene hernia mesh with synergistic antiinflammation effects. Langmuir. 2020;36(19):5251–5261. doi: 10.1021/acs.langmuir.0c00602
3. Serrano-Aroca Á., Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J. Biomed. Mater. Res. A. 2021;109(12):2695–2719. doi: 10.1002/jbm.a.37238
4. Najm A., Niculescu A.G., Rădulescu M., Gaspar B.S., Grumezescu A.M., Beuran M. Novel material optimization strategies for developing upgraded abdominal meshes. Int. J. Mol. Sci. 2023;24(18):14298. doi: 10.3390/ijms241814298
5. Saiding Q., Chen Y., Wang J., Pereira C.L., Sarmento B., Cui W., Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater. Today Bio. 2023;21:100691. doi: 10.1016/j.mtbio.2023.100691
6. Bringman S., Conze J., Cuccurullo D., Deprest J., Junge K., Klosterhalfen B., Parra-Davila E., Ramshaw B., Schumpelick V. Hernia repair: the search for ideal meshes. Hernia. 2010;14(1):81–87. doi: 10.1007/s10029-009-0587-x
7. Lak K.L., Goldblatt M.I. Mesh selection in abdominal wall reconstruction. Plast. Reconstr. Surg. 2018;142(3 Suppl):99S–106S. doi: 10.1097/PRS.0000000000004862
8. Pérez-Köhler B., Benito-Martínez S., García-Moreno F., Rodríguez M., Pascual G., Bellón J.M. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects. Surgery. 2020;167(3):598–608. doi: 10.1016/j.surg. 2019.10.010
9. Yang D., Song Z., Shen J., Song H., Yang J., Zhang P., Gu Y. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. Artif. Cells Nanomed. Biotechnol. 2020;48(1):425–434. doi: 10.1080/21691401.2019.1709858
10. Afewerki S., Bassous N., Harb S.V., Corat M.A.F., Maharjan S., Ruiz-Esparza G.U., de Pa ula M.M.M., Webster T.J., Tim C.R., Viana B.C., ... Lobo A.O. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun. Biol. 2021;4(1):233. doi: 10.1038/s42003-021-01758-2
11. Laursen S.H., Hansen S.G., Taskin M.B., Chen M., Wogensen L., Nygaard J.V., Axelsen S.M. Electrospun nanofiber mesh with connective tissue growth factor and mesenchymal stem cells for pelvic floor repair: Long-term study. J. Biomed. Mater. Res. B. Appl. Biomater. 2023;111(2):392–401. doi: 10.1002/jbm.b.35158
12. Song Z., Yang D., Hu Q., Wang Y., Zhang H., Dong W., Yang J., Gu Y. Reconstruction of abdominal wall defect with composite scaffold of 3d printed adm/pla in a rat model. Macromol. Biosci. 2023;23(4):e2200521. doi: 10.1002/mabi.202200521
13. Liu Z., Wei N., Tang R. Functionalized strategies and mechanisms of the emerging mesh for abdominal wall repair and regeneration. ACS Biomater. Sci. Eng. 2021;7(6):2064–2082. doi: 10.1021/acsbiomaterials.1c00118
14. Klinge U., Junge K., Stumpf M., Öttinge A.P., Klosterhalfen B. Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J. Biomed. Mater. Res. 2002;63(2):129–136. doi: 10.1002/jbm.10119
15. Cobb W.S., Kercher K.W., Heniford B.T. The argument for lightweight polypropylene mesh in hernia repair. Surg. Innov. 2005;12(1):63–69. doi: 10.1177/155335060501200109
16. Orenstein S.B., Saberski E.R., Kreutzer D.L., Novitsky Y.W. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J. Surg. Res. 2012;176(2):423–429. doi: 10.1016/j.jss.2011.09.031
17. Fet N., Alizai P.H., Fragoulis A., Wruck C., Pufe T., Tolba R.H., Neumann U.P., Klinge U. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models. Langenbecks. Arch. Surg. 2014;399(5):579–588. doi: 10.1007/s00423-014-1192-8
18. Ponomareva I.V., Tsukanov A.V., Ivanov I.S. Zatolokina M.A., Goryushkin E.I., Glavish I.S. Use of collagen-stimulating coatings for hernia implants: comparison of morphological characteristics of tissue in the implantation area. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2023;(2):75. [In Russian]. doi: 10.17513/spno.32498
19. Bereshchenko V.V., Lyzikov A.N., Nadyrov E.A., Kondrachuk A.N. Comparative morphological features of subcutaneous tissue of experimental animals in response to the implantation with modified polypropylene mesh endoprosthesis. Novosti khirurgii = News of Surgery. 2021;29(6):645–653. [In Russian]. doi: 10.18484/2305-0047.2021.6.645
20. Sukovatykh B.S., Nazarenko P.M., Zatolokina M.A., Mutova T.V., Mutov V.Ya., Gunov S.V. Dynamics of the cellular component of the connective tissue capsule during implantation of a super-light polypropylene-polyvinylidene fluoride endoprosthesis (experimental study). Vestnik Natsional’nogo medikokhirurgicheskogo tsentra imeni Nikolaya Ivanovicha Pirogova = Bulletin of Pirogov National Medical and Surgical Center. 2023;18(2):52–57. [In Russian]. doi: 10.25881/20728255_2023_18_2_52