Preview

Сибирский научный медицинский журнал

Advanced search

Comparative morphological analysis of connective tissue response to polypropylene endoprosthesis implantation

https://doi.org/10.18699/SSMJ20240314

Abstract

Nowadays, the palm of superiority in elective surgery belongs to the problem of hernias. According to the literature worldwide, more than 20 million patients undergo surgical treatment for hernia of the anterior abdominal wall every year, most of whom undergo alloplasty using various kinds of nets. The study of the influence of methods for fixing implants and the emerging local inflammatory response of tissues on the frequency of relapses after allognioplasty is devoted to isolated works. Aim of the study was to investigate in an experiment the characteristics of the reaction of local tissues when implanting a rigid monofilament mesh polypropylene implant with a shape memory effect, and a classic mesh endoprosthesis made of monofilament polypropylene (PP) with various methods of fixing implants. Material and methods. An experimental study on 60 white male Wistar rats was performed to identify tissue reaction features around the PP mesh. Group 1 animals (n = 30) were implanted with a rigid mesh monofilament PP implant (Herniamesh, Italy) with shape memory effect, group 2 animals (n = 30) – with a classic mesh endoprosthesis made of monofilament PP for soft tissue repair ESFIL® standard (Lintex, Russia). Biopsies were examined at 1, 2, 3 months after implantation of the PP mesh. Results. A morphological study showed that 1 month after the implantation of a rigid mesh monofilament PP implant, the inflammatory reaction is less obvious than when implanting a classical PP endoprosthesis. This reaction contributed to the earlier germination of collagen fibers around the rigid implant monofilaments. At 2 and 3 months after the implantation of PP nets in both groups of animals, there were no advantages as the regenerate formed. Conclusions. When introducing PP mesh with suture fixation and rigid monofilament PP mesh without fixation, there is a natural response to the integration of the endoprosthesis, which is characterized by aseptic inflammation followed by pronounced fibrosis around the implant. Such processes, occurring in response to the implantation of synthetic polypropylene nets, increase local mechanical tissue resistance, and can create additional strength against recurrence of inguinal hernias.

About the Authors

Kh. A. Abduvosidov
Russian Biotechnological University; Moscow Clinical Scientific Center named after A.S. Loginov; Tver State Medical University of Minzdrav of Russia
Russian Federation

Khurshed A. Abduvosidov, doctor of medical sciences

125080, Moscow, Volokolamskoe highw., 11;

111123, Moscow, Enthuziastov highw., 86;

170000, Tver, Sovetskay st., 4



V. G. Shestakova
Tver State Medical University of Minzdrav of Russia
Russian Federation

Valeriya G. Shestakova, doctor of medical sciences

170000, Tver, Sovetskay st., 4



A. M. Perevedentseva
Moscow Clinical Scientific Center named after A.S. Loginov; N.A. Semashko Сlinical Hospital of Russian Railways-Medicine
Russian Federation

Anna M. Perevedentseva

111123, Moscow, Enthuziastov highw., 86;

109386, Moscow, Stavropolskaya st., 23, b. 1



I. A. Chekmareva
A.V. Vishnevsky National Medical Research Center of Surgery
Russian Federation

Irina A. Chekmareva, doctor of biological sciences

117997, Moscow, Bolshaya Serpukhovskaya st., 27



S. M. Chudnykh
Moscow Clinical Scientific Center named after A.S. Loginov
Russian Federation

Sergey M. Chudnykh, doctor of medical sciences, professor

111123, Moscow, Enthuziastov highw., 86



L. M. Baranchugova
Russian Biotechnological University
Russian Federation

Larisa M. Baranchugova, candidate of medical sciences

125080, Moscow, Volokolamskoe highw., 11



A. G. Alekseev
Russian Biotechnological University
Russian Federation

Alexandr G. Alekseev, candidate of medical sciences

125080, Moscow, Volokolamskoe highw., 11



M. M. Kokoev
Moscow State University of Medicine and Dentistry named after A.I. Evdokimov of Minzdrav of Russia
Russian Federation

Mikhail M. Kokoev

127006, Moscow, Dolgorukovskaya st., 4



References

1. Rodríguez M., Gómez-Gil V., Pérez-Köhler B., Pascual G., Bellón J.M. Polymer hernia repair materials: adapting to patient needs and surgical techniques. Materials (Basel). 2021;14(11):2790. doi: 10.3390/ma14112790

2. Qiao Y., Li Y., Zhang Q., Wang Q., Gao J., Wang L. Dopamine-mediated zwitterionic polyelectrolyte-coated polypropylene hernia mesh with synergistic antiinflammation effects. Langmuir. 2020;36(19):5251–5261. doi: 10.1021/acs.langmuir.0c00602

3. Serrano-Aroca Á., Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J. Biomed. Mater. Res. A. 2021;109(12):2695–2719. doi: 10.1002/jbm.a.37238

4. Najm A., Niculescu A.G., Rădulescu M., Gaspar B.S., Grumezescu A.M., Beuran M. Novel material optimization strategies for developing upgraded abdominal meshes. Int. J. Mol. Sci. 2023;24(18):14298. doi: 10.3390/ijms241814298

5. Saiding Q., Chen Y., Wang J., Pereira C.L., Sarmento B., Cui W., Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater. Today Bio. 2023;21:100691. doi: 10.1016/j.mtbio.2023.100691

6. Bringman S., Conze J., Cuccurullo D., Deprest J., Junge K., Klosterhalfen B., Parra-Davila E., Ramshaw B., Schumpelick V. Hernia repair: the search for ideal meshes. Hernia. 2010;14(1):81–87. doi: 10.1007/s10029-009-0587-x

7. Lak K.L., Goldblatt M.I. Mesh selection in abdominal wall reconstruction. Plast. Reconstr. Surg. 2018;142(3 Suppl):99S–106S. doi: 10.1097/PRS.0000000000004862

8. Pérez-Köhler B., Benito-Martínez S., García-Moreno F., Rodríguez M., Pascual G., Bellón J.M. Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects. Surgery. 2020;167(3):598–608. doi: 10.1016/j.surg. 2019.10.010

9. Yang D., Song Z., Shen J., Song H., Yang J., Zhang P., Gu Y. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. Artif. Cells Nanomed. Biotechnol. 2020;48(1):425–434. doi: 10.1080/21691401.2019.1709858

10. Afewerki S., Bassous N., Harb S.V., Corat M.A.F., Maharjan S., Ruiz-Esparza G.U., de Pa ula M.M.M., Webster T.J., Tim C.R., Viana B.C., ... Lobo A.O. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun. Biol. 2021;4(1):233. doi: 10.1038/s42003-021-01758-2

11. Laursen S.H., Hansen S.G., Taskin M.B., Chen M., Wogensen L., Nygaard J.V., Axelsen S.M. Electrospun nanofiber mesh with connective tissue growth factor and mesenchymal stem cells for pelvic floor repair: Long-term study. J. Biomed. Mater. Res. B. Appl. Biomater. 2023;111(2):392–401. doi: 10.1002/jbm.b.35158

12. Song Z., Yang D., Hu Q., Wang Y., Zhang H., Dong W., Yang J., Gu Y. Reconstruction of abdominal wall defect with composite scaffold of 3d printed adm/pla in a rat model. Macromol. Biosci. 2023;23(4):e2200521. doi: 10.1002/mabi.202200521

13. Liu Z., Wei N., Tang R. Functionalized strategies and mechanisms of the emerging mesh for abdominal wall repair and regeneration. ACS Biomater. Sci. Eng. 2021;7(6):2064–2082. doi: 10.1021/acsbiomaterials.1c00118

14. Klinge U., Junge K., Stumpf M., Öttinge A.P., Klosterhalfen B. Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J. Biomed. Mater. Res. 2002;63(2):129–136. doi: 10.1002/jbm.10119

15. Cobb W.S., Kercher K.W., Heniford B.T. The argument for lightweight polypropylene mesh in hernia repair. Surg. Innov. 2005;12(1):63–69. doi: 10.1177/155335060501200109

16. Orenstein S.B., Saberski E.R., Kreutzer D.L., Novitsky Y.W. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J. Surg. Res. 2012;176(2):423–429. doi: 10.1016/j.jss.2011.09.031

17. Fet N., Alizai P.H., Fragoulis A., Wruck C., Pufe T., Tolba R.H., Neumann U.P., Klinge U. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models. Langenbecks. Arch. Surg. 2014;399(5):579–588. doi: 10.1007/s00423-014-1192-8

18. Ponomareva I.V., Tsukanov A.V., Ivanov I.S. Zatolokina M.A., Goryushkin E.I., Glavish I.S. Use of collagen-stimulating coatings for hernia implants: comparison of morphological characteristics of tissue in the implantation area. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2023;(2):75. [In Russian]. doi: 10.17513/spno.32498

19. Bereshchenko V.V., Lyzikov A.N., Nadyrov E.A., Kondrachuk A.N. Comparative morphological features of subcutaneous tissue of experimental animals in response to the implantation with modified polypropylene mesh endoprosthesis. Novosti khirurgii = News of Surgery. 2021;29(6):645–653. [In Russian]. doi: 10.18484/2305-0047.2021.6.645

20. Sukovatykh B.S., Nazarenko P.M., Zatolokina M.A., Mutova T.V., Mutov V.Ya., Gunov S.V. Dynamics of the cellular component of the connective tissue capsule during implantation of a super-light polypropylene-polyvinylidene fluoride endoprosthesis (experimental study). Vestnik Natsional’nogo medikokhirurgicheskogo tsentra imeni Nikolaya Ivanovicha Pirogova = Bulletin of Pirogov National Medical and Surgical Center. 2023;18(2):52–57. [In Russian]. doi: 10.25881/20728255_2023_18_2_52


Review

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)