Preview

Сибирский научный медицинский журнал

Advanced search

Analysis of polymorphism of innate immunity receptor genes in patients with coronary atherosclerosis and in a population sample from Novosibirsk

https://doi.org/10.18699/SSMJ20230410

Abstract

Understanding the molecular mechanisms of atherosclerotic vascular lesions formation is necessary both for assessing the risks of cardiovascular diseases and for finding approaches to their therapy. The task remains relevant, despite the large number of studies carried out, because there are differences in the factors of genetic predisposition to atherosclerosis and its complications between different ethno-territorial groups. The aim of this study was to search for genetic variants of pattern recognition receptors associated with lipid metabolism disorders that can lead to the development of coronary atherosclerosis (CA).
Material and methods. Analysis of exons and adjacent splicing sites of pattern recognition receptors genes in patients with CA (30 men), and then genotyping of a population sample from Novosibirsk (n = 1441) by real-time PCR for selected rs113706342 of the TLR1 gene and analysis of associations of its carriage with lipid metabolism were performed.
Results and discussion. The frequency of the minor allele rs113706342 C of the TLR1 gene in the sample of residents of Novosibirsk was 0.0114 ± 0.0062, the carriage of this variant was associated with an increased level of low-density lipoprotein cholesterol in both women and men (p = 0.009 and p = 0.019, respectively). Women carriers of the minor allele C for rs113706342 also had a statistically significant increase in total serum cholesterol (p = 0.013) compared with TT homozygotes. To test the role of this variant in the development of CA, genotyping of an extended sample of patients is required. In one of the patients with CA, a previously undescribed single nucleotide variant chr16:3614637 G/C was found, leading to the Leu101Val substitution in the NLRC3 gene; segregation analysis is required to assess its functional significance.
Conclusions. The association of rs113706342 C of the TLR1 gene with lipid metabolism disorders in the Russian population is shown.

About the Authors

S. V. Mikhailova
Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Svetlana V. Mikhailova, candidate of biological sciences

630090, Novosibirsk, Akademika Lavrentieva ave., 10



D. E. Ivanoshchuk
Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Dinara E. Ivanoshchuk

630090, Novosibirsk, Akademika Lavrentieva ave., 10



P. S. Orlov
Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Pavel S. Orlov

630090, Novosibirsk, Akademika Lavrentieva ave., 10



L. D. Latyntseva
Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Lyudmila D. Latyntseva, candidate of medical sciences

630089, Novosibirsk, Borisa Bogatkova st., 175/1



E. V. Kashtanova
Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Elena V. Kashtanova, doctor of biological sciences

630089, Novosibirsk, Borisa Bogatkova st., 175/1



Ya. V. Polonskaya
Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Yana V. Polonskaya, doctor of biological sciences

630089, Novosibirsk, Borisa Bogatkova st., 175/1



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Yuliya I. Ragino, doctor of medical sciences, professor, corresponding member of RAS

630089, Novosibirsk, Borisa Bogatkova st., 175/1



E. V. Shakhtshneider
Federal Research Center Institute of Cytology and Genetics SB RAS; Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
Russian Federation

Elena V. Shakhtshneider, candidate of medical sciences

630090, Novosibirsk, Akademika Lavrentieva ave., 10

630089, Novosibirsk, Borisa Bogatkova st., 175/1



References

1. Baker R.G., Hayden M.S., Ghosh S. NF-κB, inflammation, and metabolic disease. Cell. Metab. 2011;13(1):11–22. doi: 10.1016/j.cmet.2010.12.008

2. Tibaut M., Caprnda M., Kubatka P., Sinkovič A., Valentova V., Filipova S., Gazdikova K., Gaspar L., Mozos I., Egom E.E., … Petrovic D. Markers of atherosclerosis: Part 2 – Genetic and imaging markers. Heart. Lung. Circ. 2019;28(5):678–689. doi: 10.1016/j.hlc.2018.09.006

3. Forgo B., Medda E., Hernyes A., Szalontai L., Tarnoki D.L., Tarnoki A.D. Carotid artery atherosclerosis: a review on heritability and genetics. Twin Res. Hum. Genet. 2018;21(5):333–346. doi: 10.1017/thg.2018.45

4. Posadas-Sánchez R., Vargas-Alarcón G. Innate immunity in coronary disease. The role of Interleukin-12 cytokine family in atherosclerosis. Rev. Invest. Clin. 2018;70(1):5–17. doi: 10.24875/RIC.17002335

5. Chyu K.Y., Dimayuga P.C., Shah P.K. Immunogenetics of atherosclerosis-link between lipids, immunity, and genes. Curr. Atheroscler. Rep. 2020;22(10):53. doi: 10.1007/s11883-020-00874-4

6. Jaén R.I., Val-Blasco A., Prieto P., Gil-Fernández M., Smani T., López-Sendón J.L., Delgado C., Boscá L., Fernández-Velasco M. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic Transl. Sci. 2020;5(7):735–749. doi: 10.1016/j.jacbts.2020.03.015

7. Fiordelisi A., Iaccarino G., Morisco C., Coscioni E., Sorriento D. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int. J. Mol. Sci. 2019;20(7):1599. doi: 10.3390/ijms20071599

8. Cheng W., Cui C., Liu G., Ye C., Shao F., Bagchi A.K., Mehta J.L., Wang X. NF-κB, a potential therapeutic target in cardiovascular diseases. Cardiovasc. Drugs Ther. 2022. doi: 10.1007/s10557-022-07362-8

9. Hernandez R., Zhou C. Recent advances in understanding the role of IKKβ in cardiometabolic diseases. Front. Cardiovasc. Med. 2021;8:752337. doi: 10.3389/fcvm.2021.752337

10. Mikhailova S.V., Ivanoshchuk D.E. Innate-immunity genes in obesity. J. Pers. Med. 2021;11(11):1201. doi: 10.3390/jpm11111201

11. Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–185. doi: 10.1038/nature21363

12. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010;11(5):373–384. doi: 10.1038/ni.1863

13. Fore F., Budipranama M., Destiawan R.A. TLR10 and its role in immunity. Handb. Exp. Pharmacol. 2022;276:161–174. doi: 10.1007/164_2021_541

14. Coutermarsh-Ott S., Eden K., Allen I.C. Beyond the inflammasome: Regulatory NOD-like receptor modulation of the host immune response following virus exposure. J. Gen. Virol. 2016;97:825–838. doi: 10.1099/jgv.0.000401

15. Barra N.G., Henriksbo B.D., Anhê F.F., Schertzer J.D. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem. J. 2020;477(6):1089–1107. doi: 10.1042/BCJ20190472

16. Lupfer C., Kanneganti T.D. Unsolved mysteries in NLR biology. Front. Immunol. 2013;4:285. doi: 10.3389/fimmu.2013.00285

17. Takimoto M. Multidisciplinary roles of LRRFIP1/GCF2 in human biological systems and diseases. Cells. 2019;8:108. doi: 10.3390/cells8020108

18. Plourde M., Vohl M.C., Bellis C., Carless M., Dyer T., Dolley G., Marette A., Després J.P., Bouchard C., Blangero J., Pérusse L. A variant in the LRRFIP1 gene is associated with adiposity and inflammation. Obesity (Silver Spring). 2013;21(1):185–192. doi: 10.1002/oby.20242

19. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free fatty acid receptors in health and disease. Physiol. Rev. 2020;100(1):171–210. doi: 10.1152/physrev.00041.2018

20. Ichimura A., Hirasawa A., Poulain-Godefroy O., Bonnefond A., Hara T., Yengo L., Kimura I., Leloire A., Liu N., Iida K., … Froguel P. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483(7389):350–354. doi: 10.1038/nature10798

21. Wang Z., Manichukal A., Goff D.C. Jr., Mora S., Ordovas J.M., Pajewski N.M., Post W.S., Rotter J.I., Sale M.M., Santorico S.A., … Frazier-Wood A.C. Genetic associations with lipoprotein subfraction measures differ by ethnicity in the multi-ethnic study of atherosclerosis (MESA). Hum. Genet. 2017;136(6):715–726. doi: 10.1007/s00439-017-1782-y

22. Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health. 2006;6:255. doi: 10.1186/1471-2458-6-255

23. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006;2006(1):pdb.prot4455. doi: 10.1101/pdb.prot4455

24. Weyrich P., Staiger H., Stančáková A., Machicao F., Machann J., Schick F., Stefan N., Kuusisto J., Laakso M., Schäfer S., Fritsche A., Häring H.U. The D299G/T399I Toll-like receptor 4 variant associates with body and liver fat: results from the TULIP and METSIM Studies. PLoS One. 2010;5(11):e13980. doi: 10.1371/journal.pone.0013980

25. Soydas T., Karaman O., Arkan H., Yenmis G., Ilhan M.M., Tombulturk K., Tasan E., Kanigur Sultuybek G. The correlation of increased CRP levels with NFKB1 and TLR2 polymorphisms in the case of morbid obesity. Scand. J. Immunol. 2016;84(5):278–283. doi: 10.1111/sji.12471

26. Goodall A.H., Burns P., Salles I., Macaulay I.C., Jones C.I., Ardissino D., de Bono B., Bray S.L., Deckmyn H., Dudbridge F., … Bloodomics Consortium. Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood. 2010;116(22):4646–4656. doi: 10.1182/blood-2010-04-280925

27. Zhou D., Wang X., Chen T., Wen W., Liu Y., Wu Y., Yuan Z. The NLRP3 rs10754558 polymorphism is associated with the occurrence and prognosis of coronary artery disease in the Chinese han population. Biomed. Res. Int. 2016;2016:3185397. doi: 10.1155/2016/3185397

28. Al-Daghri N.M., Clerici M., Al-Attas O., Forni D., Alokail M.S., Alkharfy K.M., Sabico S., Mohammed A.K., Cagliani R., Sironi M. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J. Immunol. 2013;190(7):3716–3720. doi: 10.4049/jimmunol.1202936

29. Ben-Ali M., Corre B., Manry J., Barreiro L.B., Quach H., Boniotto M., Pellegrini S., Quintana-Murci L. Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum. Mutat. 2011;32(6):643–652. doi: 10.1002/humu.21486

30. Smith L.M., Weissenburger-Moser L.A., Heires A.J., Bailey K.L., Romberger D.J., LeVan T.D. Epistatic effect of TLR-1, -6 and -10 polymorphisms on organic dust-mediated cytokine response. Genes Immun. 2017;18(2):67–74. doi: 10.1038/gene.2016.51

31. Long H., O’Connor B.P., Zemans R.L., Zhou X., Yang I.V., Schwartz D.A. The Toll-like receptor 4 polymorphism Asp299Gly but not Thr399Ile influences TLR4 signaling and function. PLoS One. 2014;9(4):e93550. doi: 10.1371/journal.pone.0093550

32. Balistreri C.R., Candore G., Colonna-Romano G., Lio D., Caruso M., Hoffmann E., Franceschi C., Caruso C. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA. 2004;292(19):2339– 2340. doi: 10.1001/jama.292.19.2339

33. Yin Y.W., Sun Q.Q., Hu A.M., Liu H.L., Wang Q., Zhang B.B. Toll-like receptor 4 gene Asp299Gly polymorphism in myocardial infarction: a meta-analysis of 15,148 subjects. Hum. Immunol. 2014;75(2):163–169. doi: 10.1016/j.humimm.2013.11.005

34. Netea M.G., Hijmans A., van Wissen S., Smilde T.J., Trip M.D., Kullberg B.J., de Boo T., van der Meer J.W., Kastelein J.J., Stalenhoef A.F. Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia Eur. J. Clin. Invest. 2004 Feb;34(2):94–99. doi: 10.1111/j.1365-2362.2004.01303.x

35. Kiechl S., Lorenz E., Reindl M., Wiedermann C.J., Oberhollenzer F., Bonora E., Willeit J., Schwartz D.A. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 2002;347(3):185–192. doi: 10.1056/NEJMoa012673

36. Peng W., Chen H., Zhao Z., Hu X., Zhou Y., Li Y., Yang L., Wang X., Song J., Liu T., … Ying B. TLR1 polymorphisms are significantly associated with the occurrence, presentation and drug-adverse reactions of tuberculosis in Western Chinese adults. Oncotarget. 2017;9(2):1691–1704. doi: 10.18632/oncotarget.23067

37. Li B., Xia Y., Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell. Mol. Life Sci. 2020;77(14):2751–2769. doi: 10.1007/s00018-020-03453-7

38. Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011;29:415-445. doi: 10.1146/annurev-immunol-031210-101322

39. Kim S.J., Choi Y., Choi Y.H., Park T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J. Nutr. Biochem. 2012;23(2):113–122. doi: 10.1016/j.jnutbio.2010.10.012

40. Edfeldt K., Swedenborg J., Hansson G.K., Yan Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 20022;105(10):1158–1161.

41. Golovkin A.S., Ponasenko A.V., Khutornaya M.V., Kutikhin A.G., Salakhov R.R., Yuzhalin A.E., Zhidkova I.I., Barbarash O.L., Barbarash L.S. Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. Gene. 2014;550(1):101–109. doi: 10.1016/j.gene.2014.08.022

42. Zhang M., Tang X., Wang Y., Wu S., Wang M., Liu Q., Sandford A.J., He J.Q. Variants of TLR1 associated with tuberculosis susceptibility in the Chinese Tibetan population but not in Han Chinese. Infect. Genet. Evol. 2018;61:53–59. doi: 10.1016/j.meegid.2018.02.021

43. Wright S.W., Emond M.J., Lovelace-Macon L., Ducken D., Kashima J., Hantrakun V., Chierakul W., Teparrukkul P., Chantratita N., Limmathurotsakul D., West T.E. Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis. Emerg. Microbes Infect. 2019;8(1):282–290. doi: 10.1080/22221751.2019.1575172


Review

Views: 263


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)