Analysis of polymorphism of innate immunity receptor genes in patients with coronary atherosclerosis and in a population sample from Novosibirsk
https://doi.org/10.18699/SSMJ20230410
Abstract
Understanding the molecular mechanisms of atherosclerotic vascular lesions formation is necessary both for assessing the risks of cardiovascular diseases and for finding approaches to their therapy. The task remains relevant, despite the large number of studies carried out, because there are differences in the factors of genetic predisposition to atherosclerosis and its complications between different ethno-territorial groups. The aim of this study was to search for genetic variants of pattern recognition receptors associated with lipid metabolism disorders that can lead to the development of coronary atherosclerosis (CA).
Material and methods. Analysis of exons and adjacent splicing sites of pattern recognition receptors genes in patients with CA (30 men), and then genotyping of a population sample from Novosibirsk (n = 1441) by real-time PCR for selected rs113706342 of the TLR1 gene and analysis of associations of its carriage with lipid metabolism were performed.
Results and discussion. The frequency of the minor allele rs113706342 C of the TLR1 gene in the sample of residents of Novosibirsk was 0.0114 ± 0.0062, the carriage of this variant was associated with an increased level of low-density lipoprotein cholesterol in both women and men (p = 0.009 and p = 0.019, respectively). Women carriers of the minor allele C for rs113706342 also had a statistically significant increase in total serum cholesterol (p = 0.013) compared with TT homozygotes. To test the role of this variant in the development of CA, genotyping of an extended sample of patients is required. In one of the patients with CA, a previously undescribed single nucleotide variant chr16:3614637 G/C was found, leading to the Leu101Val substitution in the NLRC3 gene; segregation analysis is required to assess its functional significance.
Conclusions. The association of rs113706342 C of the TLR1 gene with lipid metabolism disorders in the Russian population is shown.
Keywords
About the Authors
S. V. MikhailovaRussian Federation
Svetlana V. Mikhailova, candidate of biological sciences
630090, Novosibirsk, Akademika Lavrentieva ave., 10
D. E. Ivanoshchuk
Russian Federation
Dinara E. Ivanoshchuk
630090, Novosibirsk, Akademika Lavrentieva ave., 10
P. S. Orlov
Russian Federation
Pavel S. Orlov
630090, Novosibirsk, Akademika Lavrentieva ave., 10
L. D. Latyntseva
Russian Federation
Lyudmila D. Latyntseva, candidate of medical sciences
630089, Novosibirsk, Borisa Bogatkova st., 175/1
E. V. Kashtanova
Russian Federation
Elena V. Kashtanova, doctor of biological sciences
630089, Novosibirsk, Borisa Bogatkova st., 175/1
Ya. V. Polonskaya
Russian Federation
Yana V. Polonskaya, doctor of biological sciences
630089, Novosibirsk, Borisa Bogatkova st., 175/1
Yu. I. Ragino
Russian Federation
Yuliya I. Ragino, doctor of medical sciences, professor, corresponding member of RAS
630089, Novosibirsk, Borisa Bogatkova st., 175/1
E. V. Shakhtshneider
Russian Federation
Elena V. Shakhtshneider, candidate of medical sciences
630090, Novosibirsk, Akademika Lavrentieva ave., 10
630089, Novosibirsk, Borisa Bogatkova st., 175/1
References
1. Baker R.G., Hayden M.S., Ghosh S. NF-κB, inflammation, and metabolic disease. Cell. Metab. 2011;13(1):11–22. doi: 10.1016/j.cmet.2010.12.008
2. Tibaut M., Caprnda M., Kubatka P., Sinkovič A., Valentova V., Filipova S., Gazdikova K., Gaspar L., Mozos I., Egom E.E., … Petrovic D. Markers of atherosclerosis: Part 2 – Genetic and imaging markers. Heart. Lung. Circ. 2019;28(5):678–689. doi: 10.1016/j.hlc.2018.09.006
3. Forgo B., Medda E., Hernyes A., Szalontai L., Tarnoki D.L., Tarnoki A.D. Carotid artery atherosclerosis: a review on heritability and genetics. Twin Res. Hum. Genet. 2018;21(5):333–346. doi: 10.1017/thg.2018.45
4. Posadas-Sánchez R., Vargas-Alarcón G. Innate immunity in coronary disease. The role of Interleukin-12 cytokine family in atherosclerosis. Rev. Invest. Clin. 2018;70(1):5–17. doi: 10.24875/RIC.17002335
5. Chyu K.Y., Dimayuga P.C., Shah P.K. Immunogenetics of atherosclerosis-link between lipids, immunity, and genes. Curr. Atheroscler. Rep. 2020;22(10):53. doi: 10.1007/s11883-020-00874-4
6. Jaén R.I., Val-Blasco A., Prieto P., Gil-Fernández M., Smani T., López-Sendón J.L., Delgado C., Boscá L., Fernández-Velasco M. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic Transl. Sci. 2020;5(7):735–749. doi: 10.1016/j.jacbts.2020.03.015
7. Fiordelisi A., Iaccarino G., Morisco C., Coscioni E., Sorriento D. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int. J. Mol. Sci. 2019;20(7):1599. doi: 10.3390/ijms20071599
8. Cheng W., Cui C., Liu G., Ye C., Shao F., Bagchi A.K., Mehta J.L., Wang X. NF-κB, a potential therapeutic target in cardiovascular diseases. Cardiovasc. Drugs Ther. 2022. doi: 10.1007/s10557-022-07362-8
9. Hernandez R., Zhou C. Recent advances in understanding the role of IKKβ in cardiometabolic diseases. Front. Cardiovasc. Med. 2021;8:752337. doi: 10.3389/fcvm.2021.752337
10. Mikhailova S.V., Ivanoshchuk D.E. Innate-immunity genes in obesity. J. Pers. Med. 2021;11(11):1201. doi: 10.3390/jpm11111201
11. Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–185. doi: 10.1038/nature21363
12. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010;11(5):373–384. doi: 10.1038/ni.1863
13. Fore F., Budipranama M., Destiawan R.A. TLR10 and its role in immunity. Handb. Exp. Pharmacol. 2022;276:161–174. doi: 10.1007/164_2021_541
14. Coutermarsh-Ott S., Eden K., Allen I.C. Beyond the inflammasome: Regulatory NOD-like receptor modulation of the host immune response following virus exposure. J. Gen. Virol. 2016;97:825–838. doi: 10.1099/jgv.0.000401
15. Barra N.G., Henriksbo B.D., Anhê F.F., Schertzer J.D. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem. J. 2020;477(6):1089–1107. doi: 10.1042/BCJ20190472
16. Lupfer C., Kanneganti T.D. Unsolved mysteries in NLR biology. Front. Immunol. 2013;4:285. doi: 10.3389/fimmu.2013.00285
17. Takimoto M. Multidisciplinary roles of LRRFIP1/GCF2 in human biological systems and diseases. Cells. 2019;8:108. doi: 10.3390/cells8020108
18. Plourde M., Vohl M.C., Bellis C., Carless M., Dyer T., Dolley G., Marette A., Després J.P., Bouchard C., Blangero J., Pérusse L. A variant in the LRRFIP1 gene is associated with adiposity and inflammation. Obesity (Silver Spring). 2013;21(1):185–192. doi: 10.1002/oby.20242
19. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free fatty acid receptors in health and disease. Physiol. Rev. 2020;100(1):171–210. doi: 10.1152/physrev.00041.2018
20. Ichimura A., Hirasawa A., Poulain-Godefroy O., Bonnefond A., Hara T., Yengo L., Kimura I., Leloire A., Liu N., Iida K., … Froguel P. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483(7389):350–354. doi: 10.1038/nature10798
21. Wang Z., Manichukal A., Goff D.C. Jr., Mora S., Ordovas J.M., Pajewski N.M., Post W.S., Rotter J.I., Sale M.M., Santorico S.A., … Frazier-Wood A.C. Genetic associations with lipoprotein subfraction measures differ by ethnicity in the multi-ethnic study of atherosclerosis (MESA). Hum. Genet. 2017;136(6):715–726. doi: 10.1007/s00439-017-1782-y
22. Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health. 2006;6:255. doi: 10.1186/1471-2458-6-255
23. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006;2006(1):pdb.prot4455. doi: 10.1101/pdb.prot4455
24. Weyrich P., Staiger H., Stančáková A., Machicao F., Machann J., Schick F., Stefan N., Kuusisto J., Laakso M., Schäfer S., Fritsche A., Häring H.U. The D299G/T399I Toll-like receptor 4 variant associates with body and liver fat: results from the TULIP and METSIM Studies. PLoS One. 2010;5(11):e13980. doi: 10.1371/journal.pone.0013980
25. Soydas T., Karaman O., Arkan H., Yenmis G., Ilhan M.M., Tombulturk K., Tasan E., Kanigur Sultuybek G. The correlation of increased CRP levels with NFKB1 and TLR2 polymorphisms in the case of morbid obesity. Scand. J. Immunol. 2016;84(5):278–283. doi: 10.1111/sji.12471
26. Goodall A.H., Burns P., Salles I., Macaulay I.C., Jones C.I., Ardissino D., de Bono B., Bray S.L., Deckmyn H., Dudbridge F., … Bloodomics Consortium. Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood. 2010;116(22):4646–4656. doi: 10.1182/blood-2010-04-280925
27. Zhou D., Wang X., Chen T., Wen W., Liu Y., Wu Y., Yuan Z. The NLRP3 rs10754558 polymorphism is associated with the occurrence and prognosis of coronary artery disease in the Chinese han population. Biomed. Res. Int. 2016;2016:3185397. doi: 10.1155/2016/3185397
28. Al-Daghri N.M., Clerici M., Al-Attas O., Forni D., Alokail M.S., Alkharfy K.M., Sabico S., Mohammed A.K., Cagliani R., Sironi M. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J. Immunol. 2013;190(7):3716–3720. doi: 10.4049/jimmunol.1202936
29. Ben-Ali M., Corre B., Manry J., Barreiro L.B., Quach H., Boniotto M., Pellegrini S., Quintana-Murci L. Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum. Mutat. 2011;32(6):643–652. doi: 10.1002/humu.21486
30. Smith L.M., Weissenburger-Moser L.A., Heires A.J., Bailey K.L., Romberger D.J., LeVan T.D. Epistatic effect of TLR-1, -6 and -10 polymorphisms on organic dust-mediated cytokine response. Genes Immun. 2017;18(2):67–74. doi: 10.1038/gene.2016.51
31. Long H., O’Connor B.P., Zemans R.L., Zhou X., Yang I.V., Schwartz D.A. The Toll-like receptor 4 polymorphism Asp299Gly but not Thr399Ile influences TLR4 signaling and function. PLoS One. 2014;9(4):e93550. doi: 10.1371/journal.pone.0093550
32. Balistreri C.R., Candore G., Colonna-Romano G., Lio D., Caruso M., Hoffmann E., Franceschi C., Caruso C. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA. 2004;292(19):2339– 2340. doi: 10.1001/jama.292.19.2339
33. Yin Y.W., Sun Q.Q., Hu A.M., Liu H.L., Wang Q., Zhang B.B. Toll-like receptor 4 gene Asp299Gly polymorphism in myocardial infarction: a meta-analysis of 15,148 subjects. Hum. Immunol. 2014;75(2):163–169. doi: 10.1016/j.humimm.2013.11.005
34. Netea M.G., Hijmans A., van Wissen S., Smilde T.J., Trip M.D., Kullberg B.J., de Boo T., van der Meer J.W., Kastelein J.J., Stalenhoef A.F. Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia Eur. J. Clin. Invest. 2004 Feb;34(2):94–99. doi: 10.1111/j.1365-2362.2004.01303.x
35. Kiechl S., Lorenz E., Reindl M., Wiedermann C.J., Oberhollenzer F., Bonora E., Willeit J., Schwartz D.A. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 2002;347(3):185–192. doi: 10.1056/NEJMoa012673
36. Peng W., Chen H., Zhao Z., Hu X., Zhou Y., Li Y., Yang L., Wang X., Song J., Liu T., … Ying B. TLR1 polymorphisms are significantly associated with the occurrence, presentation and drug-adverse reactions of tuberculosis in Western Chinese adults. Oncotarget. 2017;9(2):1691–1704. doi: 10.18632/oncotarget.23067
37. Li B., Xia Y., Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell. Mol. Life Sci. 2020;77(14):2751–2769. doi: 10.1007/s00018-020-03453-7
38. Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011;29:415-445. doi: 10.1146/annurev-immunol-031210-101322
39. Kim S.J., Choi Y., Choi Y.H., Park T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J. Nutr. Biochem. 2012;23(2):113–122. doi: 10.1016/j.jnutbio.2010.10.012
40. Edfeldt K., Swedenborg J., Hansson G.K., Yan Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 20022;105(10):1158–1161.
41. Golovkin A.S., Ponasenko A.V., Khutornaya M.V., Kutikhin A.G., Salakhov R.R., Yuzhalin A.E., Zhidkova I.I., Barbarash O.L., Barbarash L.S. Association of TLR and TREM-1 gene polymorphisms with risk of coronary artery disease in a Russian population. Gene. 2014;550(1):101–109. doi: 10.1016/j.gene.2014.08.022
42. Zhang M., Tang X., Wang Y., Wu S., Wang M., Liu Q., Sandford A.J., He J.Q. Variants of TLR1 associated with tuberculosis susceptibility in the Chinese Tibetan population but not in Han Chinese. Infect. Genet. Evol. 2018;61:53–59. doi: 10.1016/j.meegid.2018.02.021
43. Wright S.W., Emond M.J., Lovelace-Macon L., Ducken D., Kashima J., Hantrakun V., Chierakul W., Teparrukkul P., Chantratita N., Limmathurotsakul D., West T.E. Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis. Emerg. Microbes Infect. 2019;8(1):282–290. doi: 10.1080/22221751.2019.1575172