The use of apolipoprotein A-I as a transport form of the green fluorescent protein GFP gene in rat hepatocytes
https://doi.org/10.18699/SSMJ20230409
Abstract
The aim of this study was to investigate the possibility of using apolipoprotein A-I (apo A-I) as a transport form of the green fluorescent protein (GFP) gene into rat hepatocytes.
Material and methods. A culture of isolated rat hepatocytes was used as a model. Apo A-I conjugate with fluorescein isothiocyanate (FITC) was obtained by incubation of apo A-I protein with FITC in carbonate buffer pH 9.5 at a ratio of 12.5 μg FITC per 1 mg of protein. Plasmids for pE-GAG transfection with an integrated GFP gene were enriched in the promoter part with cis-elements of the CC(GCC)3-5 type to enhance complex formation with apo A-I. An inverted fluorescence microscope was used for visual analysis of cell fluorescence.
Results and discussion. The paper presents evidence of FITC-labeled apo A-I penetration into the cytoplasm and nuclei of rat hepatocytes by receptor-mediated endocytosis. On this basis, it is proposed an attempt to use apo A-I as a means of targeted delivery of plasmid DNA with an integrated GFP gene into the cell. According to the results of fluorescence microscopy, the use of apo A-I as a plasmid DNA transfection agent led to the accumulation of the GFP protein in the cytoplasm of hepatocytes. No fluorescent protein was observed in the absence of apo A-I.
Conclusions. The result obtained may indicate the delivery of the GFP gene to the nuclear apparatus of the cell, its expression and GFP protein synthesis.
About the Authors
L. M. PolyakovRussian Federation
Lev M. Polyakov, doctor of medical sciences, professor
630117, Novosibirsk, Timakova st., 2
D. V. Sumenkova
Russian Federation
Dina V. Sumenkova, doctor of biological sciences
630091, Novosibirsk, Krasny ave., 52
M. V. Kotova
Russian Federation
Mariya V. Kotova
630117, Novosibirsk, Timakova st., 2
N. V. Trifonova
Russian Federation
Natalia V. Trifonova
630117, Novosibirsk, Timakova st., 2
R. A. Knyazev
Russian Federation
Roman A. Knyazev, candidate of biological sciences
630117, Novosibirsk, Timakova st., 2
References
1. Kouraklis G. Gene therapy for cancer: From the laboratory to the patient. Dig. Dis. Sci. 2000;45(6):1045–1052. doi: 10.1023/a:1005592309466
2. Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M., Northrop J.P., Ringold G.M., Danielsen M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 1987;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413
3. Balicki D., Beutler E. Gene therapy of human disease. Medicine (Baltimore). 2002;81(1):69–86. doi: 10.1097/00005792-200201000-00005
4. Jung H.J., Hwang D.S., Wei Q.D., Cha H.J. Carassius auratus – originated recombinant histone H1 C-terminal peptide as gene delivery material. Biotechnol. Prog. 2008;24(1):17–22. doi: 10.1021/bp070069b
5. Polyakov L.M., Panin L.E. High-density lipoprotein, and apolipoprotein A-I: a regulatory role and novel therapeutic strategies for the treatment atherosclerosis. Ateroskleroz = Atherosclerosis. 2013;9(1):42–53. [In Russian].
6. Sumenkova D.V., Polyakov L.M., Panin L.E. Plasma lipoproteins as a transport form of extracellular DNA. Bull. Exp. Biol. Med. 2013;154(11):622–623. doi: 10.1007/s10517-013-2014-7
7. Kim S.I., Shin D., Lee H., Ahn B.Y., Yoon Y., Kim M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J. Hepatol. 2009;50(3):479–488. doi: 10.1016/j.jhep.2008.10.029
8. Michell D.L., Vickers K.C. Lipoprotein carriers of microRNAs. Biochim. Biophys. Acta. 2016;(12 Pt B): 2069–2074. doi: 10.1016/j.bbalip.2016.01.011
9. Kratzer I., Werning K., Panzenboeck U., Bernhart E., Reicher H., Wronski R., Windisch M., Hammer A., Malle E., Zimmer A., Sattler W. Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier. J. Control. Release. 2007;117(3):301–311. doi: 10.1016/j.jconrel.2006.11.020
10. Polyakov L.M., Sumenkova D.V., Knyazev R.A., Panin L.E. The analysis of the interaction of lipoproteins and steroid hormones. Biomeditsinskaya khimiya = Biomedical Chemistry. 2011;57(3):308–313. [In Russian]. doi: 10.18097/pbmc20115703308
11. Panin L.E., Russkikh G.S., Polyakov L.M. Detection of apolipoprotein A-I, B, and E immunoreactivity in the nuclei of various rat tissue cells. Biochemistry (Mosc.). 2000;65(12):1419–1423. doi: 10.1023/a:1002861008363
12. Panin L., Gimautdinova O., Kuznetsov P., Tuzikov F. The mechanism of interacting biologically active complexes dehydroepiandrosterone- or tetrahydrocortisol- apolipoprotein A-I with DNA and their role in enhancement of gene expression and protein biosynthe-sis in hepatocytes. Curr. Chem. Biol. 2011;5(1):9–16. doi: 10.2174/2212796811105010009
13. Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M., Turoverov K.K. Fluorescent proteins: physicochemical properties and use in cell biology. Tsitologiya = Cell and Tissue Biology. 2007;49(5):395–420. [In Russian].
14. Zhang H., Forman H.J. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch. Biochem. Biophys. 2017;617:145–154. doi: 10.1016/j.abb.2016.11.003
Review
For citations:
Polyakov L.M., Sumenkova D.V., Kotova M.V., Trifonova N.V., Knyazev R.A. The use of apolipoprotein A-I as a transport form of the green fluorescent protein GFP gene in rat hepatocytes. Сибирский научный медицинский журнал. 2023;43(4):91-96. (In Russ.) https://doi.org/10.18699/SSMJ20230409