Experience in the development of a system for repeated prosthetic heart valves
https://doi.org/10.18699/SSMJ20230408
Abstract
The failure of heart valve bioprostheses, requiring repeated intervention to replace them, is a serious drawback that narrows the scope of such devices. The present study demonstrates the experimental investigation of a medical device designed to partially solve the problem of repeated interventions on heart valves, primarily with an emphasis on reducing the duration and trauma of such procedures due to the sutureless balloon implantation method of the «valvein- valve» method.
Material and methods. The paper presents a series of in silico, in vitro and in vivo experiments to evaluate various aspects of the device under development. Numerical modeling of the final shape setting to the supporting frame of the heart valve prosthesis to select the most promising concept for prototyping was carried out in the Abaqus/CAE (Dassault Systèmes, France) based on the finite element method. The selected optimal support frame model was prototyped in the form of a series of prosthesis samples of four standard sizes for hydrodynamic studies of quantitative characteristics in vitro. The study was carried out in the Vivitro Labs unit (Vivitro Labs, Canada), imitating the physiological mode of the heart, the prostheses were examined for the mitral position. The developed prototypes of the device were supplemented with related products, an implant holder and a balloon catheter, after which the proposed method of sutureless fixation was validated in an in vitro implantation procedure on a bovine heart model and a series of in vivo (n = 3) chronic experiments on animals.
Results. In the course of numerical simulation, it was shown that in Model No. 3 of the supporting frame of the prosthesis, the smallest stresses occur – with an amplitude of up to 490 MPa. For other concepts (Models No. 1 and No. 2), this indicator was significantly higher, 543 and 514 MPa, respectively. Prototypes obtained on the basis of the selected shape of the support frame demonstrated satisfactory hydrodynamic characteristics: effective hole area 190-261 mm2, regurgitation volume 6–9 ml/cycle, average transprosthetic gradient 4.4–6.4 mmHg, depending on size. The study of the technology of sutureless balloon implantation in an in vitro model of the heart and the subsequent chronic experiment on sheep confirmed the main idea of the system – the possibility of a significant reduction in the duration of repeated prosthetics. It has been shown that the time of suture implantation of the “classic” frame prosthesis of the mitral valve is 23–29 minutes, with a total access time of 41–52 minutes. When implanting the experimental device, the sutureless prosthesis itself took 4–6 minutes, access time 24–29 minutes. At the same time, one-month results of an echocardiographic study of the operation of the prosthesis demonstrated satisfactory hemodynamics.
Conclusions. This work demonstrates a consistent series of tests of the system being developed for repeated heart valve replacement, which substantiates some design solutions, confirms the effectiveness and viability of the chosen approach to sutureless minimally invasive implantation.
Keywords
About the Authors
E. A. OvcharenkoRussian Federation
Evgeny A. Ovcharenko, candidate of technical sciences
650002, Kemerovo, Sosnovy blvd, 6
K. Yu. Klyshnikov
Russian Federation
Kirill Yu. Klyshnikov, candidate of medical sciences
650002, Kemerovo, Sosnovy blvd, 6
A. N. Stasev
Russian Federation
Alexander N. Stasev, candidate of medical sciences
650002, Kemerovo, Sosnovy blvd, 6
A. V. Evtushenko
Russian Federation
Alexey V. Evtushenko, doctor of medical sciences
650002, Kemerovo, Sosnovy blvd, 6
I. K. Khalivopulo
Russian Federation
Ivan K. Khalivopulo
650002, Kemerovo, Sosnovy blvd, 6
D. V. Borisenko
Russian Federation
Dmitry V. Borisenko
650002, Kemerovo, Sosnovy blvd, 6
T. V. Glushkova
Russian Federation
Tatyana V. Glushkova, candidate of biological sciences
650002, Kemerovo, Sosnovy blvd, 6
A. V. Ivanova
Russian Federation
Anna V. Ivanova
650002, Kemerovo, Sosnovy blvd, 6
I. V. Dvadtsatov
Russian Federation
Ivan V. Dvadtsatov
650002, Kemerovo, Sosnovy blvd, 6
S. S. Krutitsky
Russian Federation
Sergey S. Krutitsky, candidate of medical sciences
109004, Moscow, Yauzskaya st., 11
Yu. A. Kudryavtseva
Russian Federation
Yulia A. Kudryavtseva, doctor of biological sciences
650002, Kemerovo, Sosnovy blvd, 6
O. L. Barbarash
Russian Federation
Olga L. Barbarash, doctor of medical sciences, professor, academician of the RAS
650002, Kemerovo, Sosnovy blvd, 6
L. S. Barbarash
Russian Federation
Leonid S. Barbarash, doctor of medical sciences, professor, academician of the RAS
650002, Kemerovo, Sosnovy blvd, 6
References
1. Bokeriya L.A., Milievskaya E.B., Kudzoeva Z.F., Pryanishnikov V.V., Skopin A.I., Yurlov I.A. Cardiovascular surgery – 2018. Diseases and congenital abnormalities of circulatory system. Moscow: NMITsSSKh im. A.N. Bakuleva; 2019. 270 p. [In Russian].
2. Kostyunin A.E., Ovcharenko E.A., Klyshnikov K.Yu. Modern understanding of mechanisms of bioprosthetic valve structural degeneration: a literature review. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2018;(11):145–152. [In Russian]. doi: 10.15829/1560-4071-2018-11-145-152
3. Kostyunin A.E., Rezvova M.A. The role of residual xenoanthigens in the degeneration of xenogenic bioprosthetic heart valves. Immunologiya = Immunology. 2019;40(4):56–63. [In Russian]. doi: 10.24411/0206-4952-2019-14005
4. Zhuravleva I.Y., Karpova E.V., Oparina L.A., Poveschenko O.V., Surovtseva M.A., Titov A.T., Ksenofontov A.L., Vasilieva M.B., Kuznetsova E.V., Bogachev-Prokophiev A.V., Trofimov B.A. Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: A multiparametric assessment study. Mater. Sci. Eng. C. Mater. Bio.l Appl. 2021;118:111473. doi: 10.1016/j.msec.2020.111473
5. Danilov V.V., Klyshnikov K.Y., Gerget O.M., Skirnevsky I.P., Kutikhin A.G., Shilov A.A., Ganyukov V.I., Ovcharenko E.A. Aortography keypoint tracking for transcatheter aortic valve implantation based on multi-task learning. Front. Cardiovasc. Med. 2021;(8):699. doi: 10.3389/fcvm.2021.697737
6. Rezvova M.A., Yuzhalin A.E., Glushkova T.V., Makarevich M.I., Nikishau P.A., Kostjuk S.V., Klyshnikov K.Y., Matveeva V.G., Khanova M.Y., Ovcharenko E.A. Biocompatible nanocomposites based on poly(- styrene-block-isobutylene-block-styrene) and carbon nanotubes for biomedical application. Polymers (Basel). 2020;12(9):2158. doi: 10.3390/polym12092158
7. Motta S.E., Falk V., Hoerstrup S.P., Emmert M.Y. Polymeric valves appearing on the transcatheter horizon. Eur. J. Cardiothorac. Surg. 2021;59(5):1057–1058. doi: 10.1093/ejcts/ezab089
8. Balsam L.B., Grossi E.A., Greenhouse D.G., Ursomanno P., Deanda A., Ribakove G.H., Culliford A.T., Galloway A.C. Reoperative valve surgery in the elderly: Predictors of risk and long-term survival. Ann. Thorac. Surg. 2010;90(4):1195–1200. doi: 10.1016/j.athoracsur.2010.04.057
9. Karaskov A.M., Zheleznev S.I., Nazarov V.M., Lavinyukov S.O., Larionov P.M., Bogachev-Prokofiev A.V., Glotova N.I., Matyugin M.P. Clinical and morphological changes in dysfunctions of biological heart prostheses. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2006;(2):21–26. [In Russian].
10. Kaneko T., Vassileva C.M., Englum B., Kim S., Yammine M., Brennan M., Suri R.M., Thourani V.H., Jacobs J.P., Aranki S. Contemporary outcomes of repeat aortic valve replacement: A benchmark for transcatheter valve-in-valve procedures. Ann. Thorac. Surg. 2015;100(4):1298–1304. doi: 10.1016/j.athoracsur.2015.04.062
11. Skopin I.I., Otarov A.M., Kakhktsyan P.V., Asatryan T.V., Kurbanov Sh.M., Paronyan K.V. Aortic valve replacement in elderly and advanced age patients: analysis of preoperative risk factors. Kompleksnyye problemy serdechno-sosudistykh zabolevaniy = Complex Issues of Cardiovascular Diseases. 2018;7(4S):24–35. [In Russian]. doi: 10.17802/2306-1278-2018-7-4S-24-35
12. Отаров А.М. Влияние предоперационных факторов риска на результаты протезирования аортального клапана у больных пожилого возраста: автореф. дис. … канд. мед. наук. М., 2018. Otarov A.M. Influence of preoperative risk factors on the results of aortic valve replacement in elderly patients: abstract of thesis … cand. med. sciences. Moscow, 2018. [In Russian].
13. Santarpino G., Pfeiffer S., Concistrè G., Fischlein T. REDO aortic valve replacement: the sutureless approach. J. Heart Valve Dis. 2013;22(5) 615–620.
14. Sokolov V.V., Kovalyov A.I., Vladimirov V.V., Ivanov I.V., Bikbova N.M. Perceval S sutureless prosthesis in aortic valve replacement. Neotlozhnaya meditsinskaya pomoshch’ = Emergency Medical Care. 2019;8(1):87–92. [In Russian]. doi: 10.23934/2223-9022-2019-8-1-87-92
15. Tarasov R.S., Imaev T.E., Ganyukov V.I., Rutkovskaya N.V., Odarenko Yu.N., Barbarash L.S. Transcatheter reimplantation of bioprosthesis of theheart valve to a patient with critical aortal insufficiency later for 32 years after primary prosthetics. Grudnaya i serdechno-sosudistaya khirurgiya = Russian Journal of Thoracic and Cardiovascular Surgery. 2018;60(2):160–166. [In Russian]. doi: 10.24022/0236-2791-2018-60-2-160-166
16. Ganyukov V.I., Shloido E.A., Tarasov R.S., Rogulina N.V., Khalivopulo I.K., Ganyukov I.V., Kochergina A.M., Sizova I.N., Barbarash L.S. Transseptal transcatheter valve-in-valve implantation for failed surgical mitral bioprosthesis: the first clinical experience. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2020;24(1):94–103. [In Russian]. doi: 10.21688/1681-3472-2020-1-94-103
17. Wernly B., Zappe A.-K., Unbehaun A., Sinning J.-M., Jung C., Kim W.-K., Fichtlscherer S., Lichtenauer M., Hoppe U.C., Alushi B., … Lauten A. Transcatheter valve-in-valve implantation (VinV-TAVR) for failed surgical aortic bioprosthetic valves. Clinical Research in Cardiology. 2019;108(1):83–92. doi: 10.1007/s00392-018-1326-z
18. Dziubińska A., Surdacki P., Winiarski G., Bulzak T., Majerski K., Piasta M. Analysis of the new forming process of medical screws with a cylindrical head of 316 LVM steel. Materials (Basel). 2021;14(4):710. doi: 10.3390/ma14040710
19. Cicciù M. Bioengineering methods of analysis and medical devices: A current trends and state of the art. Materials. 2020;13(3):797. doi: 10.3390/ma13030797
20. Shaukat A., Tajti P., Sandoval Y., Stanberry L., Garberich R., Nicholas Burke M., Gössl M., Henry T., Mooney M., Sorajja P., … Brilakis E.S. Incidence, predictors, management and outcomes of coronary perforations. Catheter. Cardiovasc. Interv. 2019;93(1):48–56. doi: 10.1002/ccd.27706
21. Ginestra P.S., Ceretti E., Fiorentino A. Potential of modeling and simulations of bioengineered devices: Endoprostheses, prostheses and orthoses. Proc. Inst. Mech. Eng. H. 2016;230(7):607–638. doi: 10.1177/0954411916643343
22. Russ J.B., Li R.L., Herschman A.R., Waisman H., Vedula V., Kysar J.W., Kalfa D. Design optimization of a cardiovascular stent with application to a balloon expandable prosthetic heart valve. Mater. Des. 2021;209:109977. doi: 10.1016/j.matdes.2021.109977
23. Sedaghat A., Sinning J.-M., Utzenrath M., Ghalati P.F., Schmitz C., Werner N., Nickenig G., Grube E., Ensminger S., Steinseifer U., Kuetting M. Hydrodynamic performance of the Medtronic CoreValve and the Edwards SAPIEN XT transcatheter heart valve in surgical bioprostheses: an in vitro valve-in-valve model. Ann. Thorac. Surg. 2016;101(1):118–124. doi: 10.1016/j.athoracsur.2015.06.047
24. Harloff M.T., Chowdhury M., Hirji S.A., Percy E.D., Yazdchi F., Shim H., Malarczyk A.A., Sobieszczyk P.S., Sabe A.A., Shah P.B., Kaneko T. A stepby- step guide to transseptal valve-in-valve transcatheter mitral valve replacement. Ann. Cardiothorac. Surg. 2021;10(1):113–121. doi: 10.21037/acs-2020-mv-104
25. Kamioka N., Babaliaros V., Morse M.A., Frisoli T., Lerakis S., Iturbe J.M., Binongo J., Corrigan F., Yousef A., Gleason P., … Greenbaum A. Comparison of clinical and echocardiographic outcomes after surgical redo mitral valve replacement and transcatheter mitral valve-in-valve therapy. JACC Cardiovasc. Interv. 2018;11(12):1131–1138. doi: 10.1016/j.jcin.2018.03.011
26. Shadanov A.A., Lyashenko M.M., Zhuravleva I.Yu., Trebushat D.V., Kozyr K.V., Vasilyeva M.B., Zykov I.S., Zhulkov M.O., Sirota D.A., Chernyavskiy A.M. Experimental evaluation of a hybrid thoracic aortic prosthesis in a pig model. Sibirskiy zhurnal klinicheskoy i eksperimental’noy meditsiny = Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):141–149. [In Russian]. doi: 10.29001/2073-8552-2021-36-1-141-149
27. Sharifulin R.M., Bogachev-Prokophiev A.V., Zhuravleva I.Yu., Timchenko T.P., Zykov I.S., Boyarkin E.V., Ovcharov M.A., Karaskov A.M. Testing of delivery system for transcatheter mitral valve implantation. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. 2018;22(4):80–87. [In Russian]. doi: 10.21688/1681-3472-2018-4-80-87
28. Imaev T.E., Komlev A.E., Romakina V.V., Lepilin P.M., Makeev M.I., Kolegaev A.S., Margolina A.A., Sapelnikov O.V., Fedotenkov I.S., Saidova M.A., Akchurin R.S. Transcatheter “valve-in-valve” implantation of bioprosthesis in failed surgical tricuspid bioprosthesis (first experience in Russia). Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2019;(2):31–37. [In Russian]. doi: 10.15829/1560-4071-2019-2-31-37