Comparative analysis of the structural organization of the human cerebellar cortex in the upper and lower semilunar lobes in the age aspect
https://doi.org/10.18699/SSMJ20230407
Abstract
The cerebellum is not just a “coordination node” but phylogenetically the most ancient, multicomponent, complex system. The aim of the study was to carry out a comparative analysis of the structural organization of the cerebellar cortex in the upper and lower semilunar lobes in the age aspect.
Material and methods. The data of the sectional study of the cerebellum of 196 men and 180 women who were divided into two groups were analyzed. In the first group, the structural organization of the cerebellar cortex in the area of the upper semilunar lobule and in the second group, in the area of the lower semilunar lobule was studied. The first group included 179 persons (93 men and 86 women) aged 21 to 88 years who died between 2016 and 2018; the second group included 197 persons (103 men and 94 women) aged 22 to 88 years who died between 2019 and 2022. Autopsy material was taken from the upper and lower semilunar lobes in both cerebellar hemispheres, was fixed according to the standard technique, and cortical thickness was determined.
Results. Cortical thickness in both upper and lower semilunar lobules of both cerebellar hemispheres in both men and women statistically significantly decreased by senile age. Thus, by senile age, males depleted their cortex by 19.5 and 22.5 % in the upper semilunar lobule of the right and left hemisphere, respectively, and females by 20.4 % and 21.9 %, respectively. In the inferior semilunar lobule the corresponding decrease in cortical thickness was 21.5 and 21.9 % in males and 23.7 and 21.9 % in females. A positive correlation between cortical thickness of the upper and lower semilunar lobes, both in the right and in the left hemisphere was established.
Conclusions. The results of the study can become starting points for understanding the processes of age-related neurodegeneration and serve as a scientific basis for further morphofunctional, basic and clinical research.
About the Author
A. A. BalandinRussian Federation
Anatoly A. Balandin, candidate of medical sciences
614990, Perm, Petropavlovskaya st., 26
References
1. Mariën P., Borgatti R. Language and the cerebellum. Handb. Clin. Neurol. 2018;154:181–202. doi: 10.1016/B978-0-444-63956-1.00011-4
2. Schmahmann J.D. The cerebellum and cognition. Neurosci. Lett. 2019;688:62–75. doi: 10.1016/j.neulet.2018.07.005
3. Canto C.B., Onuki Y., Bruinsma B., van der Werf Y.D., de Zeeuw C.I. The sleeping cerebellum. Trends Neurosci. 2017;40(5):309–323. doi: 10.1016/j.tins.2017.03.001
4. van Overwalle F., Manto M., Cattaneo Z., Clausi S., Ferrari C., Gabrieli J.D.E., Guell X., Heleven E., Lupo M., Ma Q., … Leggio M. Consensus paper: cerebellum and social cognition. Cerebellum. 2020;19(6):833–868. doi:10.1007/s12311-020-01155-1
5. Starowicz-Filip A., Chrobak A.A., Moskała M., Krzyżewski R.M., Kwinta B., Kwiatkowski S., Milczarek O., Rajtar-Zembaty A., Przewoźnik D. The role of the cerebellum in the regulation of language functions. Psychiatr. Pol. 2017;51(4):661–671. doi: 10.12740/PP/68547
6. Kokurkina R.G., Mendelevich E.G. Type 1 chiari malformation and cognitive impairment: focus on the cerebellum. Nevrologicheskiy vestnik = Neurology Bulletin. 2019;51(2):80–84. [In Russian].
7. Pal’chik A.B., Pashkov A.Y., Petrova N.A., Savel’eva N.A. The role of cerebellum in the development and disorders of cognitive functions and behaviour in children. Spetsial’noe obrazovanie = Special Education. 2021;(4):134–152. [In Russian]. doi: 10.26170/1999-6993_2021_04_09
8. Mitoma H., Manto M., Hampe C.S. Immunemediated cerebellar ataxias: practical guidelines and therapeutic challenges. Curr. Neuropharmacol. 2019;17(1):33–58. doi: 10.2174/1570159X16666180917105033
9. Natalskaya N.Yu., Merinov A.V., Fedotov I.A. To the issue of geriatric ethics. Klinicheskaya gerontologiya = Clinical Gerontology. 2009;15(12):41–43. [In Russian].
10. Gazibara T., Kurtagic I., Kisic-Tepavcevic D., Nurkovic S., Kovacevic N., Gazibara T., Pekmezovic T. Falls, risk factors and fear of falling among persons older than 65 years of age. Psychogeriatrics. 2017;17(4):215–223. doi: 10.1111/psyg.12217
11. Dyomin A.V., Moroz T.P., Gribanov A.V., Torshin V.I. Postural-motor control characteristics in older female fallers. Ekologiya cheloveka = Human Ecology. 2016;(5):30–35. [In Russian]. doi: 10.33396/1728-0869-2016-5-30-35
12. Balandin A.A., Balandina I.A., Pankratov M.K. Effectiveness of treatment of elderly patients with traumatic brain injury complicated by subdural hematoma. Uspekhi gerontologii = Advances in Gerontology. 2021;34(3):461–465. [In Russian]. doi: 10.34922/AE.2021.34.3.017
13. Bessonov I.S., Kuznetsov V.A., Gorbatenko E.A., Sapozhnikov S.S., Zyryanov I.P. Percutaneous coronary interventions for ST elevation myocardial infarction in different age groups. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2021;41(2):56–65. [In Russian]. doi: 10.18699/SSMJ20210208
14. Gabitova M.A., Krupenin P.M., Sokolova A.A., Napalkov D.A., Fomin V.V. «Fragility» as a predictor of bleedings in elderly patients with atrial fibrillation taking direct oral anticoagulants. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2019;39(6):70–76. [In Russian]. doi: 10.15372/SSMJ20190609
15. McCormick D.A., McGinley M.J., Salkoff D.B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 2015;31:133–140. doi: 10.1016/j.conb.2014.10.003
16. Balandin A.A., Zheleznov L.M., Balandina I.A. Comparative characteristics of human thalamus parameters in the first period of mature age and in senile age in mesocephals. Sibirskij nauchnyj medicinskij zhurnal = Siberian Scientific Medical Journal. 2021;41(2):101–105. [In Russian]. doi: 10.18699/SSMJ20210214
17. Balandin V.A., Balandina I.A. Precentral gyrus width in mesocephalic males according to X-ray computed tomography. Morfologiya = Morphology. 2018;154(6):76–78. [In Russian].
18. Katerlina I.R., Izranov V.A., Solovieva I.G., Rymar O.D., Nasonova N.V., Abramov V.V. Functional asymmetry of brain hemispheres and morphological asymmetry of thyroid gland. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Biologiya, klinicheskaya meditsina = Journal of the Novosibirsk State University. Series: Biology, Clinical Medicine. 2010;8(1):129–132. [In Russian].
19. Pal’cyn A.A., Komissarova S.V. Age-related brain changes. Patologicheskaya fiziologiya i eksperimental’naya terapiya = Pathological Physiology and Experimental Therapy. 2015;59(4):108–116 [In Russian].
20. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039
21. Jorgensen C., Wang Z. Hormonal regulation of mammalian adult neurogenesis: a multifaceted mechanism. Biomolecules. 2020;10(8):1151. doi: 10.3390/biom10081151
22. Cornil C.A., Ball G.F., Balthazart J. Functional significance of the rapid regulation of brain estrogens: Where do the estrogens come from? Brain Res. 2006;1126(1):2–26. doi: 10.1016/j.brainres.2006.07.098
23. Pintana H., Pongkan W., Pratchayasakul W., Chattipakorn N., Chattipakorn S.C. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress. Age (Dordr). 2015;37(5):84. doi: 10.1007/s11357-015-9827-4
24. Spritzer M.D., Roy E.A. Testosterone and adult neurogenesis. Biomolecules. 2020;10(2):225. doi: 10.3390/biom10020225
25. Patra A., Singla R.K., Chaudhary P., Malhotra V. Morphometric analysis of the corpus callosum using cadaveric brain: an anatomical study. Asian J. Neurosurg. 2020;15(2):322–327. doi: 10.4103/ajns.AJNS_328_19