Preview

Сибирский научный медицинский журнал

Advanced search

Mechanisms of renal damage in patients with new coronavirus infection (literature review)

https://doi.org/10.18699/SSMJ20230401

Abstract

One in four people in the world currently has kidney problems to varying degrees. It is known that the new coronavirus infection (COVID-19) is primarily a respiratory disease, but the kidneys are the target organ. Coronavirus is tropic to renal tissue due to the presence in the organ of the angiotensin converting enzyme type 2 and transmembrane serine protease 2, which are considered the target of this virus. The presence of any stage of renal insufficiency is an independent adverse risk factor for coronavirus infection and results in high hospitalization rates in hospitals and a mortality rate. Kidney damage is caused by a variety of pathogenetic mechanisms: direct cytopathic effect of the virus on their structure (in the kidney body - podocytes, mesangial cells, in the vascular glomerulus - endothelium of capillaries, in the proximal tubules - epithelial cells); cytokine storm; damage to the renin-angiotensin-aldosterone system; immunothrombosis. In many patients with confirmed coronavirus infection, significant changes in urine analysis (hematuria, proteinuria) and an increase in serum creatinine levels have been observed in the laboratory since the first days of the disease. One of the main risk factors for mortality is the development of acute renal injury. More research is needed on the exact effects of SARS-CoV-2 on the kidneys. Understanding the main pathogenetic pathways of kidney damage in COVID-19 is necessary for the development of strategies and the development of effective treatment methods.

About the Authors

E. V. Utkina
Kemerovo State Medical University of Minzdrav of Russia
Russian Federation

Ekaterina V. Utkina

650056, Kemerovo, Voroshilova st., 22a



V. V. Novakovskaya
Kemerovo Regional Clinical Hospital n.a. S.V. Belyaev
Russian Federation

Victoria V. Novakovskaya

650066, Kemerovo, Oktyabrsky ave., 22



M. V. Egorova
Kemerovo State Medical University of Minzdrav of Russia; Kemerovo Regional Clinical Hospital n.a. S.V. Belyaev
Russian Federation

Marina V. Egorova, candidate of medical sciences

650056, Kemerovo, Voroshilova st., 22a

650066, Kemerovo, Oktyabrsky ave., 22



N. V. Fomina
Kemerovo State Medical University of Minzdrav of Russia; Kemerovo Regional Clinical Hospital n.a. S.V. Belyaev
Russian Federation

Natalya V. Fomina, doctor of medical sciences

650056, Kemerovo, Voroshilova st., 22a

650066, Kemerovo, Oktyabrsky ave., 22



L. D. Chesnokova
Kemerovo State Medical University of Minzdrav of Russia; Kemerovo Regional Clinical Hospital n.a. S.V. Belyaev
Russian Federation

Lyudmila D. Chesnokova

650056, Kemerovo, Voroshilova st., 22a

650066, Kemerovo, Oktyabrsky ave., 22



References

1. Muralidar S., Ambi S.V., Sekaran S., Krishnan U.M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARSCoV-2. Biochimie. 2020;179:85–100. doi: 10.1016/j.biochi.2020.09.018

2. Mehandru S., Merad M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y

3. Baloch S., Baloch M.A., Zheng T., Pei X. The coronavirus disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020;250(4):271–278. doi: 10.1620/tjem.250.271

4. Habibzadeh F., Lang T. The coronavirus pandemic: “The Show Must NOT Go On”. Int. J. Occup. Environ. Med. 2020;11(2):63–64. doi: 10.34172/ijoem.2020.1979

5. Cummings M.J., Baldwin M.R., Abrams D., Jacobson S.D., Meyer B.J., Balough E.M., Aaron J.G., Claassen J., Rabbani L.E., Hastie J., … O’Donnell M.R. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–1770. doi: 10.1016/S0140-6736(20)31189-2

6. Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19(3):141–154. doi: 10.1038/s41579-020-00459-7

7. Johnson A.G., Amin A.B., Ali A.R., Hoots B., Cadwell B.L., Arora S., Avoundjian T., Awofeso A.O., Barnes J., Bayoumi N.S., … Scobie H.M. COVID-19 incidence and death rates among unvaccinated and fully vaccinated adults with and without booster doses during periods of Delta and Omicron variant emergence – 25 U.S. Jurisdictions, April 4 – December 25, 2021. MMWR Morb. Mortal. Wkly Rep. 2022;71(4):132–138. doi: 10.15585/mmwr.mm7104e2

8. Haitovich A.B., Ermachkova P.A. Pathogenesis of COVID-19. Tavricheskiy medico-biologicheskiy vestnik = Tauric Medico-Biological Bulletin. 2020; 23(4):113–132. [In Russian]. doi: 10.37279/2070-8092-2020-23-4-113-132

9. Kirtipal N., Bharadwaj S., Kang S.G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet. Evol. 2020;85:104502. doi: 10.1016/j.meegid.2020.104502

10. Niu Z., Xu S., Zhang J., Zou Z., Ren L., Liu X., Zhang S., Zou H., Hu X., Wang J., … Song Z. Bioinformatic analysis of the S protein of human respiratory coronavirus. Mol. Phylogenet. Evol. 2023;181:107704. doi: 10.1016/j.ympev.2023.107704

11. Verano-Braga T., Martins A.L.V., Motta-Santos D., Campagnole-Santos M.J., Santos R.A.S. ACE2 in the renin-angiotensin system. Clin. Sci. (Lond). 2020;134(23):3063–3078. doi: 10.1042/CS20200478

12. Laghlam D., Jozwiak M., Nguyen L.S. Renin-angiotensin-aldosterone system and immunomodulation: a state-of-the-art review. Cells. 2021;10(7):1767. doi: 10.3390/cells10071767

13. Li Z., Wu M., Yao J., Guo J., Liao X., Song S., Li J., Duan G., Zhou Y., Wu X., … Yan J. Caution on kidney dysfunctions of COVID-19 patients. MedRxiv: the preprint server for health sciences. 2020 Mar. doi: 10.1101/2020.02.08.20021212

14. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., … Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63(3):364–374. doi: 10.1007/s11427-020-1643-8

15. Oyelade T., Alqahtani J., Canciani G. Prognosis of COVID-19 in patients with liver and kidney diseases: an early systematic review and meta-analysis. Trop. Med. Infect. Dis. 2020;5(2):80. doi: 10.3390/tropicalmed5020080

16. Wang X., Fang X., Cai Z., Wu X., Gao X., Min J., Wang F. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: a systemic review and meta-analysis. Research (Wash. D.C.). 2020;2020:2402961. doi: 10.34133/2020/2402961

17. Henry B.M., Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020;52(6):1193–1194. doi: 10.1007/s11255-020-02451-9

18. Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., Yao Y., Ge S., Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi: 10.1016/j.kint.2020.03.005

19. Wang L., Li X., Chen H., Yan S., Li D., Li Y., Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am. J. Nephrol. 2020;51(5):343–348. doi: 10.1159/000507471

20. Nadim M.K., Forni L.G., Mehta R.L., Connor M.J. Jr, Liu K.D., Ostermann M., Rimmelé T., Zarbock A., Bell S., Bihorac A., … Kellum J.A. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat. Rev. Nephrol. 2020;16(12):747–764. doi: 10.1038/s41581-020-00356-5

21. Pei G., Zhang Z., Peng J., Liu L., Zhang C., Yu C., Ma Z., Huang Y., Liu W., Yao Y., Zeng R., Xu G. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J. Am. Soc. Nephrol. 2020;31(6):1157–1165. doi: 10.1681/ASN.2020030276

22. Chen T., Wu D., Chen H., Yan W., Yang D., Chen G., Ma K., Xu D., Yu H., Wang H., … Ning Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091

23. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 2012;120(4):179–184. doi: 10.1159/000339789

24. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D S.C., … China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032

25. Malberti F., Pecchini P., Marchi G., Foramitti M. When a nephrology ward becomes a COVID-19 ward: the Cremona experience. J. Nephrol. 2020;33(4):625–628. doi: 10.1007/s40620-020-00743-y

26. Maltseva L.D., Vasalatiy I.M., Isaakian Yu.A., Morozova O.L. Mechanisms of acute kidney injury in COVID-19. Review. Nefrologiya i dializ = Nephrology and Dialysis. 2021;23(3):352–365. [In Russian]. doi: 10.28996/2618-9801-2021-3-352-365

27. Malik Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020;42(1):3–11.

28. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., … Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5

29. Martinez-Rojas M.A., Vega-Vega O., Bobadilla N.A. Is the kidney a target of SARS-CoV-2? Am. J. Physiol. Renal Physiol. 2020;318(6):1454–1462. doi: 10.1152/ajprenal.00160.2020

30. Liao J., Yu Z., Chen Y., Bao M., Zou C., Zhang H., Liu D., Li T., Zhang Q., Li J., Cheng J., Mo Z. Single-cell RNA sequencing of human kidney. Sci. Data. 2020;7(1):4. doi: 10.1038/s41597-019-0351-8

31. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., Dhama K., Yatoo M.I., Bonilla-Aldana D.K., Rodriguez-Morales A.J. SARSCoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med. 2020;28(2):174–184.

32. Napolitano G., Ballabio A. TFEB at a glance. J. Cell. Sci. 2016;129(13):2475–2481. doi: 10.1242/jcs.146365

33. Yue Y., Nabar N.R., Shi C.S., Kamenyeva O., Xiao X., Hwang I.-Y., Wang M., Kehrl J.H. SARScoronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis. 2018;9(9):904. doi: 10.1038/s41419-018-0917-y

34. Ragab D., Salah Eldin H., Taeimah M., Khattab R., Salem R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 2020;11:1446. doi: 10.3389/fimmu.2020.01446

35. Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the immune system. Physiol. Res. 2020;69(3):379–388. doi: 10.33549/physiolres.934492

36. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta. 2020;509:280–287. doi: 10.1016/j.cca.2020.06.017

37. Grebe A., Hoss F., Latz E. NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 2018;122(12):1722–1740. doi: 10.1161/CIRCRESAHA.118.311362

38. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., Ruiz C., Melguizo-Rodríguez L. SARSCoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. doi: 10.1016/j.cytogfr.2020.06.001

39. Durlacher-Betzer K., Hassan A., Levi R., Axelrod J., Silver J., Naveh-Many T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018;94(2):315–325. doi: 10.1016/j.kint.2018.02.026

40. Rose-John S. Interleukin-6 family cytokines. Cold Spring. Harb. Perspect. Biol. 2018;10(2):a028415. doi: 10.1101/cshperspect.a028415

41. Lelis D.F., Freitas D.F., Machado A.S., Crespo T.S., Santos S.H.S. Angiotensin-(1-7), adipokines and inflammation. Metabolism. 2019;95:36–45. doi: 10.1016/j.metabol.2019.03.006

42. Ogunlade B.O., Lazartigues E., Filipeanu C.M. Angiotensin type 1 receptor-dependent internalization of SARS-CoV-2 by angiotensin-converting enzyme 2. Hypertension. 2021;77(4):42–43. doi: 10.1161/HYPERTENSIONAHA.120.16795

43. Luther J.M., Fogo A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int. Suppl. (2011). 2022;12(1):63–68. doi: 10.1016/j.kisu.2021.11.006

44. Rafiq K., Hitomi H., Nakano D., Nishiyama A. Pathophysiological roles of aldosterone and mineralocorticoid receptor in the kidney. J. Pharmacol. Sci. 2011;115(1):1–7. doi: 10.1254/jphs.10r07cr

45. Nicolai L., Massberg S. Platelets as key players in inflammation and infection. Curr. Opin. Hematol. 2020;27(1):34–40. doi: 10.1097/MOH.0000000000000551

46. Cicco S., Cicco G., Racanelli V., Vacca A. Neutrophil extracellular traps (NETs) and damageassociated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm. 2020;2020:7527953. doi: 10.1155/2020/7527953

47. Jansen M.P., Emal D., Teske G.J., Dessing M.C., Florquin S., Roelofs J.J. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 2017;91(2):352–364. doi: 10.1016/j.kint.2016.08.006

48. Nakazawa D., Kumar S.V., Marschner J., Desai J., Holderied A., Rath L., Kraft F., Lei Y., Fukasawa Y., Moeckel G.W., … Anders H.J. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 2017;28(6):1753–1768. doi: 10.1681/ASN.2016080925

49. Schurink B., Roos E., Radonic T., Barbe E., Bouman C.S.C., de Boer H.H., de Bree G.J., Bulle E.B., Aronica E.M., Florquin S., … Bugiani M. Viral pres-ence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1(7): 290–299. doi: 10.1016/S2666-5247(20)30144-0

50. Jayarangaiah A., Kariyanna P.T., Chen X., Jayarangaiah A., Kumar A. COVID-19-associated coagulopathy: an exacerbated immunothrombosis response. Clin. Appl. Thromb. Hemost. 2020;26:1076029620943293. doi: 10.1177/1076029620943293

51. Henry B.M., Vikse J., Benoit S., Favaloro E.J., Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020;507:167–173. doi: 10.1016/j.cca.2020.04.027

52. Wang L., He W.B., Yu X.M., Hu D.L., Jiang H. Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients. World J. Clin. Cases. 2020;8(19):4370–4379. doi: 10.12998/wjcc.v8.i19.4370

53. Manne B.K., Denorme F., Middleton E.A., Portier I., Rowley J.W., Stubben C., Petrey A.C., Tolley N.D., Guo L., Cody M., … Campbell R.A. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–1329. doi: 10.1182/blood.2020007214

54. Diao B., Wang C., Wang R., Feng Z., Zhang J., Yang H., Tan Y., Wang H., Wang C., Liu L., … Chen Y. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat. Commun. 2021;12(1):2506. doi: 10.1038/s41467-021-22781-1

55. Vinayagam S., Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 2020;260:118431. doi: 10.1016/j.lfs.2020.118431


Review

For citations:


Utkina E.V., Novakovskaya V.V., Egorova M.V., Fomina N.V., Chesnokova L.D. Mechanisms of renal damage in patients with new coronavirus infection (literature review). Сибирский научный медицинский журнал. 2023;43(4):6-14. (In Russ.) https://doi.org/10.18699/SSMJ20230401

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-2512 (Print)
ISSN 2410-2520 (Online)