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Резюме

Точная и быстрая сегментация магнитно-резонансных (МР) изображений с объемными образованиями головного 
мозга, например глиобластом и менингиом, помогает спланировать хирургическое и лучевое лечение, увеличить 
безопасность и радикальность хирургического вмешательства, что в свою очередь позволяет повысить общую 
продолжительность жизни пациентов и безрецидивный период. Цель исследования – разработка и оценка эффек-
тивности глубокой сверточной нейронной сети с пропускающими соединениями для автоматической сегментации 
объемных образований головного мозга (менингиомы и глиобластомы) на послеоперационных МР-изображениях, 
а также анализ ее точности в сравнении с ручной экспертной сегментацией и существующими методами. Мате-
риал и методы. В работе рассмотрены создание архитектуры, вдохновленной моделью SegResNet, обучение на 
BraTS2024-GLI и BraTS2024-MEN-RT, описан метод составления обучающей выборки, снижающий дисбаланс 
классов, и произведен анализ результатов в сравнении с участниками соревнований BraTS 2024. Результаты и 
их обсуждение. Разработанная модель обучена и протестирована на двух наборах данных послеоперационных 
изображений глиобластомы и менингиомы. Проанализирован ряд метрик для сравнения модели с описанными в 
литературе методами, а также ее оценки в контексте вариабельности ручной сегментации разными экспертами. 
Модель достигает коэффициента Сёренсена 0,8299 при сегментации менингиомы и 0,7028 при сегментации кон-
траст-накапливающей области глиобластомы. Кроме того, сегментация модели дает точную оценку объема обла-
сти опухоли, о чем свидетельствуют высокие значения коэффициента внутриклассовой корреляции – 0,9661 для 
менингиомы и 0,8339 для глиобластомы. В целом разработанная модель требует меньше ресурсов для обучения и 
получения результата. Заключение. Модель производит сегментацию как минимум на уровне эксперта, но со зна-
чительно меньшей вариабельностью, в особенности при оценке объема опухоли после хирургического лечения.
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Abstract

Accurate and fast segmentation of magnetic resonance (MR) images with volumetric brain formations, such as 
glioblastomas and meningiomas, helps plan surgical and radiation treatment, increase the safety and radicality of 
surgical intervention, which in turn allows to increase the overall life expectancy of patients and the disease-free period. 
It is required for the development and evaluation of the effectiveness of a deep convolutional neural network with 
transmission connections for automatic segmentation of volumetric brain formations (meningiomas and glioblastomas) 
on postoperative MR images, as well as analysis of its accuracy in comparison with manual expert segmentation and 
existing methods. Material and methods. The paper considers the creation of an architecture inspired by the SegResNet 
model, training on BraTS2024-GLI and BraTS2024-MEN-RT, describes a method for compiling a training sample that 
reduces class imbalance, and analyzes the results in comparison with participants in the BraTS 2024 competition. Results 
and discussion. The developed model was trained and tested on two datasets of postoperative images of glioblastoma 
and meningioma. Several metrics are analyzed to compare the model with the methods described in the literature, as 
well as to evaluate it in the context of the variability of manual segmentation by different experts. The model achieves 
a Sorensen coefficient 0.8299 for meningioma segmentation and 0.7028 for glioblastoma contrast-accumulating region 
segmentation. In addition, the segmentation of the model provides an accurate estimate of the volume of the tumor 
area, as evidenced by the high values of the coefficient of intra-class correlation – 0.9661 for meningioma and 0.8339 
for glioblastoma. Overall, the developed model requires fewer resources for learning and getting results. Conclusions. 
Model performs segmentation at least at the expert level, but with significantly less variability, especially when assessing 
the volume of the tumor after surgical treatment.
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Введение
Центральный регистр опухолей головного 

мозга в США в последнем своем отчете декла-
рировал заболеваемость 24,71 случая на 100 000 
человек. Наиболее часто встречающейся злока-
чественной опухолью мозга была глиобластома 
(14,2 % всех опухолей и 50,1 % всех злокаче-
ственных опухолей), а наиболее распространен-
ной незлокачественной опухолью ‒ менингиома 
(39,7 % всех опухолей и 55,4 % всех незлокаче-
ственных опухолей) [1]. В России диагностируют 
около 34  000 случаев опухолей головного мозга 
ежегодно. Диагностика опухолей ЦНС включает 
в себя сочетание клинической оценки пациента 
(осмотр врачом) и визуализационных исследова-
ний [2].

С целью нейровизуализации чаще всего ис-
пользуется МРТ головного мозга с контрасти-
рованием. Данный метод позволяет подробно 
визуализировать структуры головного мозга, 
определить размер, месторасположение и тип 
опухоли. Расширенные методы МРТ, такие как 
функциональная МРТ, трактография, магнит-
но-резонансная (МР) эластография могут предо-
ставить дополнительную информацию характе-
ристиках опухоли [3–5]. Сегментация опухолей 
на МРТ головного мозга является критически 
важной частью работы нейрохирурга, нейрора-
диолога, онколога для предоперационного про-
гнозирования гистологического типа опухоли, 
планирования операции на нейронавигационных 
станциях и лучевой терапии, послеоперационной 



оценки степени резекции, оценки объемных по-
казателей опухоли в динамике при комбиниро-
ванном лечении и прогнозировании выживаемо-
сти [6–8].

Основополагающим постулатом современной 
нейрохирургии является максимально безопас-
ная резекция опухоли, позволяющая увеличить 
общую продолжительность жизни пациентов и 
безрецидивный период [9, 10]. Для расчета степе-
ни резекции опухоли используется соотношение 
между хирургическим удалением и предопера-
ционным объемом опухоли. Долгое время объем 
опухоли на разных этапах лечения измерялся с 
использованием грубых мер, таких как двумер-
ное произведение наибольшего осевого диаметра 
контраст-накапливающей части опухоли, соглас-
но критериям оценки ответа (RANO) [11]. Ручная 
сегментация объема требует много времени от 
специалиста, имеет высокую меж- и внутриэкс-
пертную изменчивость и очень зависит от опыта 
специалиста [12, 13]. Коэффициент внутриклас-
совой корреляции (КВК) и обобщенный индекс 
соответствия (ОИС) между специалистами при 
определении контраст-накапливающей части 
глиобластомы до хирургического лечения были 
на высоком уровне (КВК 0,99, ОИС 0,79), однако 
показали плохую согласованность в послеопера-
ционном периоде (КВК 0,92, ОИС 0,32) [13].

За последние 20 лет произошло методологи-
ческое развитие в области сегментации медицин-
ских изображений. Классические методы вклю-
чают в себя пороговые модели [14], сегментацию 
растущей областью [15], классификационные 
модели [16], такие как K-ближайших соседей, 
случайный лес и байесовское моделирование. 
Эти методы используются в трех широко исполь-
зуемых программных пакетах для автоматизиро-
ванного анализа изображений мозга – SPM5 [17], 
FreeSurfer [18] и FSL [19].

Для сегментации послеоперационных МР- 
изображений чаще всего применяются полуав-
томатические методы, объединяющие один или 
несколько алгоритмов. Описано использование 
комбинации методов, включая энтропийный ана-
лиз, кластеризацию, активные контуры, метод 
множества уровней, анализ по оттенкам серого 
и построение гистограмм. Однако приведенные 
подходы инициализируются операторами, а вали-
дируются на одноцентровых наборах данных, и 
не получили широкого распространения в связи с 
их сложностью [6, 20–23].

В 2012 г. сверточная нейронная сеть (СНС) 
обошла классические методы и заняла первое ме-
сто в конкурсе ISBI’12 по сегментации мембран 
[24]. С тех пор подходы на основе СНС доминиру-
ют в литературе о сегментации медицинских изо-

бражений; наиболее распространена предложен-
ная в 2015 г. архитектура U-Net [25]. Например, 
в конкурсе по сегментации дооперационных МР- 
изображений глиобластомы BraTS-2023 практи-
чески все лидирующие архитектуры представ-
ляют собой варианты U-Net [26]. На сегодняш-
ний день подавляющая часть исследований по 
автоматизированной сегментации менингиомы и 
глиобластомы, включая все предыдущие задачи 
BraTS, сосредоточена исключительно на предо-
перационных изображениях, что ограничивает 
клиническую полезность метода [27]. Сегмента-
ция послеоперационных изображений является 
более сложной клинически значимой задачей.

Материал и методы
Данные
В настоящей работе обучение СНС произво-

дится на двух наборах данных: BraTS2024-GLI 
[28] и BraTS2024-MEN-RT [29], включающих по-
слеоперационные изображения глиобластомы и 
менингиомы.

Предобработка
Набор данных BraTS2024-MEN-RT содержит 

снимки, размер и ориентация в пространстве ко-
торых зависит от аппарата МРТ. Поэтому выпол-
нена регистрация к шаблону SRI24 [30], удалены 
черепа алгоритмом HD-BET [31], изображения 
нормализованы (нулевое среднее, единичная 
дисперсия) и кадрированы для удаления пустого 
фона. Набор BraTS2024-GLI уже представлен в 
пространстве SRI24 с удаленным черепом и изо-
бражения аналогично нормализованы и кадриро-
ваны.

Алгоритм выборки
Обучение моделей проводилось на двухмер-

ных срезах МР-изображений по всем трем из-
мерениям, что позволило увеличить количество 
обучающих примеров из ограниченного набора 
данных (по одному примеру на каждый возмож-
ный двумерный срез). Отсутствие пространствен-
ной информации вдоль оси среза компенсируется 
подачей соседних срезов модели. Двухмерные 
свертки требуют меньше вычислений, позволяя 
проводить больше итераций обучения за тот же 
промежуток времени.

Для сегментации менингиомы использует-
ся метод, когда каждый срез дополняется тремя 
соседними сверху и снизу (недостающие срезы 
дублируются) с формированием семиканального 
изображения, где сегментируется средний (чет-
вертый) срез. Сегментация глиобластомы вы-
полняется на основе четырех МР-модальностей 
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(T1, T1c, T2, FLAIR). С каждым срезом дополни-
тельно используют два соседних сверху и снизу, 
получая пятисрезовые последовательности для 
каждой модальности – всего 20 срезов объединя-
ются в одно двадцатиканальное изображение.

Из-за небольшого размера опухолей боль-
шинство срезов не содержит патологических из-
менений. Для устранения дисбаланса классов пе-
ред началом каждой эпохи в выборку добавляют 
равное число случайных пустых срезов и срезов 
с патологией, после чего перемешивают данные. 
Таким образом, половина тренировочных изобра-
жений содержит сегментационные метки. Чтобы 
улучшить способность модели к обобщению, во 
время обучения применялись аугментация: про-
извольная вырезка областей размером 96×96, зер-
кальное отражение и поворот на 90° с вероятно-
стью 75 %.

Архитектура
Архитектура модели основана на SegResNet 

[32], сходной с U-Net [25], но использующей сум-
мирование вместо конкатенации, что сокращает 
число каналов вдвое и уменьшает количество па-
раметров декодера. Оригинальная сеть SegResNet 
принимает объемные области 160×192×128 пик-
селей и использует трехмерную свертку, что тре-

бует большого объема памяти. Для ее обучения 
авторы использовали NVIDIA Tesla V100 32 ГБ 
с пакетом размера 1. Разработанная нами модель 
сегментирует менингиому по семиканальным 
изображениям размером 96×96, глиобластому – 
по двадцатиканальным, применяется двумерная 
свертка. Для обучения достаточно 2,4 Гб видео­
памяти (при размере пакета 32), для вывода – все-
го 80 МБ. Это позволяет использовать модель без 
специализированной аппаратной части. Архи-
тектура включает энкодер, декодер и точечную 
свертку (рисунок).

Энкодер состоит из трех уровней, уменьшая 
разрешение изображения вдвое и удваивая число 
каналов на каждом этапе. Выходы уровней энко-
дера суммируются с соответствующими входами 
декодера. Изображение после энкодера имеет 
размер 256×12×12. Декодер включает три слоя, 
увеличивающих пространственные размеры кар-
ты признаков и вдвое сокращающих количество 
каналов. Билинейная повышающая дискрети-
зация заменена на транспонированные свертки. 
Все свертки, кроме последней, имеют фильтр 
3×3, финальная свертка (1×1) формирует требу-
емое число сегментов. Увеличение пакета до 32 
привело к замене групповой нормализации на па-
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кетную. Разработанная архитектура используется 
для обеих задач и различается количеством кана-
лов входного изображения и количеством клас-
сов, на которые производится сегментация. Всего 
модель имеет 6,6 млн параметров.

Обучение
Обе модели обучались с нуля методом 

адаптивной оценки моментов (Adam) [33] c пара-
метрами β1 = 0,9, β2 = 0,999 и ϵ = 10–8. Использо-
вался 1-цикловый планировщик скорости обуче-
ния [34]. Параметр длины прогревания (warmup 
learning rate) выбран как 10 % от количества обу­
чающих шагов, т. е. планировщик повышал ско-
рость обучения c 4×10–5 до максимальной 1×10–3 
за изначальные 10 % шагов обучения, а во время 
оставшихся 90 % шагов скорость обучения посте-
пенно снижалась до 1×10–8. Метод оптимизации 
и максимальная скорость обучения подбирались 
методом решетчатого поиска в интервале от 1×10–

4 до 1×10–2 размером шага 0,2 для нескольких ме-
тодов оптимизации – стохастический градиент-
ный спуск (SGD) и SGD с импульсом Нестерова.

Функция потерь представляет собой сум-
му фокальной функции потерь [35] и функции 
потерь на основе «мягкой» дифференцируемой 
версии коэффициента Сёренсена (soft dice), где 
пересечение заменяется умножением [36]. Перед 
вычислением функции потерь к выходу модели 
применяются сигмоида для бинарной сегмента-
ции менингиомы и многопеременная логисти-
ческая функция (softmax) для многоклассовой 
сегментации глиобластомы. Для многоклассовой 
сегментации функция потерь рассчитывается для 
каждого класса и усредняется.

Для бинарной сегментации, имея предсказа-
ния модели pi и настоящий класс yi, для i-го пик-
селя, фокальная функция потерь представляет со-
бой версию взвешенной перекрестной энтропии 
с дополнительным фактором, фокусирующим 
обучение на сложных экземплярах:

FocalLoss (xi) = – αi (1 – xi)
γ log (xi),

где xi = pi , если γi = 1, иначе 1 – pi ; α устанав-
ливается как обратная частота класса на сегмен-
тации, т. е. единица, деленная на долю пикселей, 
на которых присутствует сегментируемый класс, 
среди всех пикселей; γ – гиперпараметр фокуси-
ровки на более сложных экземплярах, в данной 
работе взято значение 2.

Для бинарной сегментации функция потерь 
Сёренсена для предсказанной маски сегментации 
p и реальной маски сегментации y одного обуча-
ющего экземпляра вычисляется следующим об-
разом:

DiceLoss (p, y) = 1 – 2py + ϵ ,
p + y + ϵ

где ϵ – небольшой коэффициент, предотвращаю-
щий деление на 0, если делитель равен 0. В дан-
ной работе ϵ = 10–5.

Обе модели обучались в течение 100 эпох. 
При обучении на наборе данных BraTS-GLI каж­
дая эпоха включала 419  936 обучающих приме-
ров, составленных согласно алгоритму выборки 
(раздел 1.3) из 1000 объемных изображений обу-
чающего набора данных. Для валидации исполь-
зовалась неразмеченная валидационная выборка 
из соревнования, представленного Synapse. Из 
оставшихся 350 исследований составлена тесто-
вая выборка для расчета коэффициента Жаккара 
и КВК. В BraTS-MEN-RT каждая эпоха включала 
97  910 обучающих примеров, составленных из 
400 исследований, оставшиеся 100 исследова-
ний были взяты для валидации. Обучение про-
изводилось после завершения соревнования, по-
этому дополнительная неразмеченная выборка с 
Synapse не использовалась. Для сегментации ме-
нингиомы обучены две модели: одна на изобра-
жениях с удалением черепа, и одна без удаления 
черепа.

Использование модели
После обучения модель делает предсказание 

для каждого среза МР-изображений путем пере-
мещения окна. Предсказания усредняются на пе-
ресечениях областей. Для увеличения точности 
сегменты берутся по трем осям с поворотами и 
отражениями, всего получается 24 варианта ис-
ходного трехмерного МР-изображения, прогно-
зы которых также усредняются. Это важно для 
интеграции информации третьего измерения 
при работе двухмерных моделей с объемными 
изображениями. Например, при сегментации 
менингиомы коэффициент Сёренсена на тесто-
вой выборке варьирует от 0,576 до 0,625, однако 
усреднение позволяет добиться повышения коэф-
фициента до 0,804. Также на сегментации удаля-
ются объекты с объемом менее 64 пикселей, что 
повышает коэффициент Сёренсена до 0,8299.

Результаты

Сегментация менингиомы
Оценка полученной модели производилась по 

метрикам: коэффициент Сёренсена, мера Жак-
кара, чувствительность, специфичность, и КВК 
между объемами опухоли на предсказанных и ис-
тинных сегментациях тестового набора. Результа-
ты модели для задачи сегментации менингиомы с 
удалением и без удаления черепа представлены в 
табл. 1. Можно сделать вывод, что удаление че-
репа снижает качество сегментации менингиомы. 
Вероятной причиной является то, что на многих 
исследованиях менингиома находится близко к 
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черепу, и в некоторых случаях алгоритм удале-
ния черепа также удаляет часть опухоли. Три ко-
манды-участника соревнования BraTS2024-MEN 
(meningioma segmentation post-treatment) с наи-
большими значениеми коэффициента Сёренсена: 
0,849, 0,823 и 0,821; полученный в данной статье 
коэффициент 0,8299 сравним с лидирующими в 
соревновании командами.

Сегментация глиобластомы
Для задачи сегментации послеоперационных 

изображений глиобластомы метрики рассчиты-
ваются для каждого сегментированного класса, а 
также для всей опухоли (усиливающая опухоль, 
отек и некроз) и ее ядра (часть опухоли, нака-
пливающая контраст (Dice_ET), и некроз), опи-
сывающего то, что обычно удаляется во время 
хирургической операции. КВК между объемами 
каждой области на предсказанных и истинных 
сегментациях тестового набора рассчитывает-
ся по модели ICC(A,1) [37], для сравнения с ре-
зультатами, полученными в [13], где эта же мо-
дель используется для оценки вариабельности 
между экспертами. Результаты представлены в 
табл. 2. Среди результатов участников соревно-
вания BraTS2024-GLI (glioma segmentation post-
treatment) коэффициент Сёренсена для Dice_ET 
варьирует от 0,001 до 0,763. Три команды-участ-
ника соревнования BraTS2024-GLI (Meningioma 
segmentation post-treatment) с наибольшим значе-

ниеми коэффициента Сёренсена: 0,763, 0,751 и 
0,748. Следовательно, полученное значение 0,703 
свидетельствует о хорошем результате и доста-
точно точной сегментации опухоли.

Обсуждение
СНС (например, U-Net и DeepLab) суще-

ственно улучшили сегментацию медицинских 
изображений, повышая точность диагностики 
болезней и облегчая обработку сложных данных 
для выделения органов и опухолей, что важно 
для планирования терапии и мониторинга па-
циентов [38]. СНС способны автоматически из-
влекать признаки из области интереса непосред-
ственно из входных изображений. Результаты по 
сегментации послеоперационных изображений 
менингиомы с использованием этого же набора 
данных несколькими моделями приводятся в ра-
боте [39]. Для задачи сегментации менингиомы 
модель MedNext-Large с трехмерной сверткой 
5×5×5 [40], обученная на комбинации реальных 
и сгенерированных диффузионными моделями 
синтетических изображений опухоли, показала 
наивысшее значение коэффициента Сёренсена 
(0,8214). MedNext-Large требует специализиро-
ванного оборудования, авторы использовали два 
кластера с 48 и 96 Гб видеопамяти для обучения, 
но, как видно из табл. 1, менее вычислительно за-
тратная двумерная модель показывает аналогич-
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Таблица 1. Значения метрик для двух вариантов модели при сегментации менингиомы

Table 1. Metric values for two variants of the meningioma segmentation model

Модель Коэффициент 
Сёренсена

Коэффициент 
Жаккара

Чувствительность Специфичность КВК

С удалением черепа 0,7723 0,6781 0,8354 0,9997 0,9661

Без удаления черепа 0,8299 0,7309 0,7518 0,9996 0,9870

Таблица 2. Показатели сегментации послеоперационной глиобластомы для разных классов

Table 2. Segmentation metrics of postoperative glioblastoma for different classes

Класс Коэффициент 
Сёренсена

Коэффициент 
Жаккара

Чувствительность Специфичность КВК

Dice_ET 0,7028 0,6459 0,5328 0,9990 0,8399

Отек 0,8653 0,7667 0,3868 0,9860 0,8426

Некроз 0,6684 0,6151 0,6570 0,9999 0,9267

Область резекции 0,6276 0,6144 0,5763 0,9995 0,8826

Ядро опухоли 0,6956 0,6861 0,5036 0,9991 0,8722

Вся опухоль 0,8777 0,8476 0,4909 0,9865 0,8817
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ный коэффициент Сёренсена.
Оценка результатов может быть также про-

изведена в контексте вариабельности ручной 
сегментации между разными экспертами. При 
ранних постоперационных обследованиях КВК 
объема контраст-накапливающей опухоли на 
сегментациях экспертов нейрорадиологов с 8–20 
годами опыта и 1–5 годами опыта оценивается 
как 0,92 и 0,60 соответственно; КВК объема не 
накапливающей контраст опухоли ‒ как 0,25 и 
0,15 соответственно, что свидетельствует о край-
не низком уровне согласованности [13]. В то же 
время согласованность объемов опухолей на сег-
ментациях обученной модели с сегментациями 
экспертов, разметивших набор данных, высокая 
(более 0,7). ОИС является средним значением 
коэффициента Жаккара каждой пары сегмента-
ций несколькими экспертами одного пациента. 
В послеоперационном периоде при сегментации 
контраст-накапливающей опухоли ОИС оцени-
вается в 0,32 у экспертов с 8–20 годами опыта и 
в 0,2 у экспертов с 1–5 годами опыта; у обучен-
ной модели коэффициент Жаккара равен 0,65. По 
сравнению с этими показателями, модель имеет 
низкую вариабельность с тщательной сегмента-
цией несколькими экспертами, предоставленной 
в наборе данных. Из этого следует, что модель 
производит сегментацию как минимум на уровне 
эксперта, но со значительно меньшей вариабель-
ностью, в особенности при оценке объема опухо-
ли.

Заключение
В статье описан и проанализирован подход 

в сегментации объемных образований головно-
го мозга на разных этапах лечения с помощью 
глубоких СНС. Использована архитектура с 
применением пропускающих соединений, осу-
ществляющая сегментацию срезов объемного 
МР-изображения, но с использованием двумер-
ной свертки. Описан алгоритм составления обу­
чающей выборки двумерных срезов из набора 
объемных изображений, позволяющий избежать 
дисбаланса классов при обучении модели. Раз-
работанная модель обучена и протестирована 
на двух наборах данных послеоперационных 
изображений глиобластомы и менингиомы. Про- 
анализирован ряд метрик для сравнения модели 
с описанными в литературе методами, а также ее 
оценки в контексте вариабельности ручной сег-
ментации разными экспертами. Модель дости-
гает коэффициента Сёренсена в 0,8299 при сег-
ментации менингиомы и 0,7028 при сегментации 
контраст-накапливающей области глиобластомы. 
Кроме того, сегментация модели дает точную 

оценку объема области опухоли, о чем свидетель-
ствуют высокие значения КВК – 0,9661 для ме-
нингиомы и 0,8339 для глиобластомы.
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