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Резюме

Низкая масса тела при рождении остается одной из ключевых причин перинатальной заболеваемости и смерт-
ности. Своевременное выявление нарушений внутриутробного роста требует инструментов, способных инте-
грировать многомерные ультразвуковые и клинические данные беременной. Цель исследования – разработать 
и верифицировать модель машинного обучения, прогнозирующую риск рождения маловесного плода на основе 
фетометрических измерений и материнских факторов, а также оценить ее диагностическую ценность по срав-
нению с классическими методами. Материал и методы. Исследование включило 5477 беременных (8396 УЗИ; 
11–40 недель гестации). Контрольную группу составила 5161 женщина, родившая доношенных новорожденных 
с нормальной массой, группу случаев — 316 беременных с доношенными детьми массой менее 10-го процентиля 
для соответствующего срока беременности. Для каждого УЗИ собраны стандартные фетометрические показате-
ли и 20 клинических/социальных переменных матери. После очистки данных выполнены стратифицированное 
разделение по беременным (80 % train / 20 % test), стандартизация количественных признаков и бинарное ко-
дирование категорий. Сравнивались градиентный бустинг (XGBoost, CatBoost, LightGBM), трансформер-сеть и 
мультизадачная (регрессия + классификация) нейросеть. Гиперпараметры подбирались Optuna; качество оцени-
валось с использованием средней абсолютной ошибки (MAE), средней квадратичной ошибки прогнозирования 
(RMSE), площади под ROC-кривой (AUC), чувствительности (Se), специфичности (Sp). Результаты и их об-
суждение. Регрессия (оценка гестационного срока): стэкинг трех бустингов дал MAE 0,29 нед. (≈ 2 сут), RMSE 
0,40 нед., коэффициент детерминации (R²) 0,989. Мультизадачная сеть достигла MAE 0,32 нед. Классификация 
(маловесность / норма): мультизадачная модель показала AUC 0,96, Se 90 % и Sp 96 % при оптимальном пороге. 
Наибольший вклад в прогноз вносили окружность живота и длина бедра плода, а из материнских факторов — 
плацентарная недостаточность, гипертонические осложнения, курение и паритет. Исключение паритета снижа-
ло AUC на ≈ 0,02, подтверждая его добавочную информативность. Калибровка вероятностей после изотониче-
ской регрессии продемонстрировала близость к идеальной линии, что обеспечивает интерпретируемость риска 
для клинициста. Заключение. Создана и валидирована высокоточная система прогнозирования риска рождения 
маловесного плода, объединяющая ультразвуковую фетометрию и клинико‑социальные данные. Точность (AUC 
0,96) и высокая чувствительность делают модель перспективным скрининговым инструментом для акушерской 
практики. Внедрение алгоритма в виде автоматизированного отчета может повысить раннюю диагностику нару-
шений роста плода и оптимизировать маршрутизацию беременных группы риска. Дальнейшие шаги – внешняя 
валидация на многоцентровых данных и анализ клинико‑экономической эффективности.
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Abstract

Low birth weight remains one of the key causes of perinatal morbidity and mortality. Timely detection of intrauterine 
growth disorders requires tools capable of integrating multidimensional ultrasound and clinical data of a pregnant 
woman. The purpose of the study was to develop and verify a machine learning model that predicts the risk of having 
an underweight fetus based on fetometric measurements and maternal factors, as well as to evaluate its diagnostic value 
compared to classical methods. Material and methods. The study included 5,477 pregnant women (8,396 ultrasounds; 
11–40 weeks gestation). The control group consisted of 5,161 women who gave birth to full–term newborns with normal 
weight, the case group consisted of 316 pregnant women with full-term babies weighing less than 10th percentile for 
the corresponding period of pregnancy. For each ultrasound study, standard fetometric parameters and 20 clinical/social 
variables of the mother were collected. After data purification, a stratified division by pregnant women (80 % train / 20 
% test), standardization of quantitative characteristics, and binary coding of categories were performed. The following 
methods were compared: gradient boosting (XGBoost, CatBoost, LightGBM), transformer network and multitasking 
(regression + classification) neural network. Hyperparameters were selected by Optuna; the quality was evaluated using 
mean squared error (MAE), root mean squared error (RMSE), area under curve (AUC), sensitivity (Se), specificity 
(Sp). Results and discussion. Regression (assessment of gestational age): stacking three boosts gave MAE 0.29 weeks 
(≈ 2 days), RMSE 0.40 weeks, R2 = 0.989. The multitasking network reached MAE 0.32 weeks. Classification (LBW 
/ norm): The multitasking model showed an AUC of 0.96, Se of 90 %, and Sp of 96 % at the optimal threshold. The 
greatest contribution to the prognosis was made by the circumference of the abdomen and the length of the femur of 
the fetus, and maternal factors included placental insufficiency, hypertensive complications, smoking and parity. The 
elimination of parity reduced AUC by ≈ 0.02, confirming its additional informative value. Calibration of probabilities 
after isotonic regression demonstrated proximity to the ideal line, which ensures interpretability of risk for the clinician. 
Conclusions. A highly accurate system for predicting the risk of having a small fetus has been created and validated, 
combining ultrasound fetometry and clinical and social data. The accuracy (AUC 0.96) and high sensitivity make the 
model a promising screening tool for obstetric practice. The implementation of the algorithm in the form of an automated 
report can improve the early diagnosis of fetal growth disorders and optimize the routing of pregnant women at risk. The 
next steps are external validation based on multicenter data and analysis of clinical and economic efficiency.

Key words: low birth weight, ultrasound fetometry, machine learning, gradient boosting, transformer neural 
network, pregnancy risk prediction, intrauterine growth retardation, maternal clinical factors.
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Введение
Нарушение внутриутробного роста плода 

остается существенной глобальной проблемой: 
в 2023 г. на нее приходилось около 80 % всех 
ранних неонатальных смертей и подавляющее 
большинство случаев задержки физического и 
нейрокогнитивного развития [1]. Метаанализ 
Lancet Global Health (данные 160 стран) показал, 
что доля детей с нарушением роста практически 
не снизилась за последние 15 лет, а число ново-
рожденных с массой < 2,5 кг превысило 20 млн 
в 2015 г. [2]. Эти данные подчеркивают необхо-
димость надежных инструментов скрининга, по-

зволяющих выявлять задержку роста плода до 
рождения и своевременно корректировать веде-
ние беременности.

Ультразвуковая фетометрия – золотой стан-
дарт оценки роста плода, однако классические 
регрессионные формулы (Hadlock и др.) дают 
среднюю погрешность ± 7–10 дней по сроку и 
около 10 % по массе, что недостаточно для ранне-
го выявления нарушений. Кроме того, показатели 
фетометрии варьируют между популяциями, что 
снижает переносимость моделей.

С 2019 г. опубликовано несколько работ, ис-
пользующих алгоритмы машинного обучения 
для прогноза рождения детей с низкой массой.  
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W.T. Bekele et al. применили градиентный бу-
стинг к набору из ≈ 2600 беременностей; пло-
щадь под ROC-кривой (AUC) достигла 0,88, но в 
модели отсутствовали клинические данные мате-
рей [3]. S.M. Islam et al. и W. Khan et al. показали, 
что ансамбли деревьев и нейросети увеличивают 
точность классификации нарушений роста плода 
до 90 %, однако выборки составляли менее 1000 
наблюдений и не содержали внешней валидации 
[4, 5]. P. Punyapet et al. подтвердил прогностиче-
скую ценность простых УЗ-параметров (окруж-
ность живота плода (ОЖ), длина бедренной кости 
плода (ДБ)) в сочетании с клиническими факто-
рами (AUC 0,79) [6]. J.K. Patterson et al. постро-
или модель прогноза маловесного плода на дан-
ных стран с низким и средним уровнем дохода на 
душу населения – чувствительность (Se) состави-
ла всего 72 % при специфичности (Sp) 85 % [7].

Таким образом, большинство исследований 
на сегодняшний день использует небольшие од-
нократные срезы УЗИ, ограничено одной страной 
или популяцией, редко проходит внешнюю ва-
лидацию и не учитывает динамику фетометрии.  
S. Sanchez‑Martinez et al. впервые сопоставили 
высоко- и низкодоходную когорты (n = 1266) и 
показали, что объединение биометрии и доппле-
рометрии повышает AUC до 0,81–0,85; однако 
анализ ограничивался единичным поздним скри-
нингом без учета динамики фетометрических 
показателей, клинической картины и социально-
го статуса матери [8]. Ö. Dülger et al. применили 
девять алгоритмов машинного обучения для пря-
мого расчета массы плода; эластичная сетевая ре-
грессия обеспечила среднюю ошибку ±284 г, но 
задача оценки риска рождения маловесного пло-
да и внешняя валидация не рассматривались [9].

Таким образом, несмотря на успехи перечис-
ленных исследований, остаются следующие клю-
чевые пробелы:

1.	 Динамика роста. Требуется модель, учи-
тывающая несколько УЗ-точек у одной беремен-
ной.

2.	 Оценка клинических данных. Модель в 
своем прогнозе должна опираться не только на 
данные фетометрии, но и на клинические параме-
тры беременной, ее социальный статус и вредные 
привычки.

3.	 Мультизадачность. Совмещение регрес-
сии (срок/масса) и классификации (риск рожде-
ния маловесного новорожденного) позволяет 
улучшить калибровку, но редко реализуется.

4.	 Крупные наборы данных и внешняя про-
верка. Необходимы модели, обученные на тыся-
чах исследований с обязательной внешней вали-
дацией.

С учетом изложенного целью настоящей ра-

боты является разработка и внешняя проверка 
мультизадачной модели машинного обучения, ко-
торая на основе динамических фетометрических 
данных и клинического профиля матери надежно 
прогнозирует риск рождения ребенка с низкой 
массой тела и одновременно уточняет гестацион-
ный возраст. Модель создается на крупнейшем в 
России наборе (более 8000 УЗИ) и призвана вос-
полнить выявленные в литературе пробелы.

Материал и методы
Проведено одноцентровое ретроспектив-

но‑проспективное когортное исследование, про-
токол исследования одобрен локальным эти-
ческим комитетом при ФГБОУ ВО Кировский 
ГМУ Минздрава России (протокол №  01/2025 
от 29.01.2025). Методология согласована с ре-
комендациями TRIPOD. В базу для обучения и 
валидации модели искусственного интеллекта 
включены данные 5477 беременных женщин c 
одноплодной беременностью, проходивших на-
блюдение и родивших в Кировском областном 
клиническом перинатальном центре, г. Киров, в 
период с 2016 по 2023 г.

В выборку попадали беременные женщины, 
удовлетворяющие следующим условиям: под-
твержденная дата последней менструации при 
регулярном цикле (28–30 дней), что позволяло 
корректно рассчитать гестационный возраст; 
одноплодная беременность; возраст от 18 до 45 
лет; наличие информированного согласия на уча-
стие в исследовании и обработку персональных 
данных; соответствие менструальных сроков бе-
ременности данным эхографии, в частности коп-
чико-теменному размеру, измеренному в I триме-
стре гестации, что подтверждалось повторными 
измерениями; срочные роды в сроке 37 нед. 0 
дней – 41 нед. 6 дней. Из выборки исключались 
случаи, связанные с наличием факторов, способ-
ных исказить результаты исследования: много-
плодная беременность; наличие хронических со-
матических заболеваний в стадии декомпенсации 
и выраженных осложнений беременности, таких 
как преэклампсия, фетоплацентарная недостаточ-
ность, артериальная гипертензия, гестационный 
сахарный диабет и другие патологии; выявлен-
ные анатомические аномалии развития плода на 
этапе УЗИ; преждевременные роды в сроке менее 
37 нед. 0 дней или переношенная беременность 
сроком 42 нед. 0 дней и более.

Общая частота новорожденных с массой ме-
нее 10-го процентиля для соответствующего сро-
ка беременности составила 5,8 % (316 случаев 
из 5477). В исходной базе данных каждая запись 
соответствовала единому УЗ-сеансу и содержала 
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итоговую массу новорожденного, антропометри-
ческие, клинические и социальные параметры 
беременной, что позволило сформировать лон-
гитюдную структуру (до трех скринингов на па-
циентку) (табл. 1).

На этапе предобработки данных записи с от-
сутствием хотя бы одного ключевого фетометри-
ческого параметра исключались (1,9 % от базы). 
Единичные пропуски в клинических признаках 
заполнялись модой (категориальные) или меди-
аной (непрерывные). Заданное 3×IQR-правило 
для каждого количественного признака; крайние 
значения (< 0,4 %) проверялись по первичным 
протоколам УЗИ и либо корректировались, либо 
удалялись. Непрерывные признаки стандарти-
зированы (z-score) по статистике тренировочной 
подвыборки. Кодирование категорий: двоичное 
(0/1) для бинарных факторов; one-hot для пере-
менных с более чем двумя градациями. Вся вы-
борка была разделена на две части: для обучения 
и теста. Использовано стратифицированное раз-
биение «беременные» 80 % / 20 % (train/test) с 
учетом частоты встречаемости маловесных ново-
рожденных. Все УЗИ одной женщины попадали 
только в одну выборку для исключения «утечки» 
данных.

Архитектура трансформера (табл. 2) включа-

ла 2 слоя self-attention, 4 головы, размер скрыто-
го пространства 32; обучалась Adam (lr = 1e‑3) 
с Dropout 0,25 и Early Stopping (patience = 10). 
Оценка качества предсказаний модели прово-
дилась с помощью следующих показателей: ре-
грессия – средняя абсолютная ошибка (MAE), 
средняя квадратичная ошибка прогнозирования 
(RMSE), коэффициент детерминации (R²); клас-
сификация: точность, чувствительность (Se), 
специфичность (Sp), площадь под ROC-кривой 
(AUC); 95%-й доверительный интервал для AUC 
рассчитывали методом ДеЛонга; калибровка ве-
роятностей – изотоническая регрессия (sklearn). 
Интерпретация признаков – SHAP (TreeExplainer/
DeepExplainer) по лучшей модели.

Статистический анализ выполнен в среде 
Python 3.10 (библиотеки pandas, numpy, scikit-
learn 1.3, lightgbm 4.0, xgboost 2.0, optuna 3.5, shap 
0.43). Нормальность распределений оценивалась 
с помощью теста Шапиро – Уилка, в зависимости 
от его результатов по непрерывным признакам 
группы сравнивали с помощью t-теста Стьюден-
та или критерия Манна – Уитни, по категориаль-
ным переменным – с использованием критерия χ² 
или точного критерия Фишера; при множествен-
ных тестах применена коррекция Бонферрони. 
Для определения значимости различий моделей 
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Таблица 1. Категории собранных переменных

Table 1. Categories of collected variables

Блок переменных Показатель

Фетометрия Бипариетальный размер, лобно-затылочный размер, окружность головки (ОГ), ОЖ, 
ДБ

Материнские харак-
теристики

Возраст, рост, масса до беременности (индекс массы тела), хронические заболева-
ния (гипертоническая болезнь, сахарный диабет и т.д.), осложнения гестации (пре-
эклампсия, фетоплацентарная недостаточность), курение, уровень стресса (шкала 
PSS-10), паритет

Социальные факторы Образование, занятость, семейный доход

Метеопараметры Сезон/квартал беременности

Таблица 2. Архитектуры и гиперпараметры примененных моделей машинного обучения

Table 2. Architectures and hyperparameters of applied machine learning models

Задача Алгоритм Гиперпараметр

Регрессия (гестационный 
возраст) XGBoost, CatBoost, LightGBM bayes-оптимизация (Optuna, 

100 итераций)

Классификация 
(маловесность, 0/1)

XGBoost-классификатор, LightGBM-
классификатор, мультизадачная 
трансформер‑сеть

scale_pos_weight для баланса 
классов
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(AUC) применяли z-тест ДеЛонга. Уровень ста-
тистической значимости принят p < 0,05.

В итоге реализована модульная pipeline-струк-
тура (sklearn pipeline) с возможностью последую-
щего дообучения на новых данных.

Результаты
В исследование включено 5477 беременных 

с 8396 УЗ-обследованиями. Частота рождения 
детей с низкой массой тела (менее 10-го процен-
тиля для соответствующего срока беременно-
сти) составила 5,8 % (316 из 5477). Масса тела 
новорожденных в контрольной группе состави-
ла 3,32 ± 0,42 кг, тогда как в группе маловесного 
плода – 2,16 ± 0,34 кг (p < 0,001). У матерей но-
ворожденных с нарушением роста значимо чаще, 
чем у женщин контрольной группы, встречались 
плацентарная недостаточность (соответствен-
но 25,32 и 0,97 %, p < 0,001), гипертонические 
расстройства беременности (19,30 и 4,98 %, p <  
<0,001) и активное курение (32 и 14 %, p < 0,001).

Сводная оценка регрессионных алгоритмов 
приведена в табл. 3. Наилучший результат пока-
зал стекинговый ансамбль из трех градиентных 
бустингов (XGBoost, CatBoost, LightGBM): сред-
няя абсолютная ошибка составила 0,29 нед., что 
эквивалентно приблизительно двум календарным 
суткам; корень из среднеквадратичной ошибки – 
0,40 нед., а R² достиг 0,989, свидетельствуя о том, 
что модель объясняет почти 99 % вариабельности 
истинного срока беременности. Для сравнения, 
трансформер-сеть, обученная на той же выбор-
ке, обеспечила среднюю абсолютную ошибку  
0,35 нед. при R² = 0,985. Хотя ее точность лишь 
незначительно уступает ансамблю, нейросетевой 
подход остается ценным благодаря способности 
учитывать временную динамику фетометриче-
ских измерений.

Разработанная линейная регрессионная мо-
дель отражает значимый вклад отдельных фето-
метрических и клинических факторов в точность 

определения гестационного возраста. Согласно 
уравнению GA = 10,88 + 0,445∙ОЖ + 0,316∙ДБ + 
+0,104∙ОГ − 0,490∙ПН − 0,293∙Курение + 0,218∙Па-
ритет, центральную роль в прогнозе срока бере-
менности (GA, нед.) играют ОЖ (см) и ДБ (см), 
тогда как ОГ (см) имеет более умеренное влия-
ние. Среди материнских характеристик (бинар-
ная переменная: 1 – есть, 0 – нет) наиболее ве-
сомое отрицательное влияние оказывает наличие 
плацентарной недостаточности (ПН) и курения, 
а увеличение числа предшествующих родов (па-
ритет) способствует небольшому, но значимому 
удлинению прогнозируемого срока гестации. Ис-
пользование данного регрессионного уравнения 
позволяет клиницисту на основании минималь-
ного набора ультразвуковых и анамнестических 
данных получать надежную оценку срока бере-
менности. Это обеспечивает раннее выявление 
отклонений внутриутробного развития и опера-
тивную коррекцию тактики ведения беременно-
сти, тем самым улучшая перинатальные исходы.

Однако наивысшие диагностические показа-
тели продемонстрировала мультизадачная ней-
росетевая архитектура, в которой единый скры-
тый слой решает одновременно задачу регрессии 
(датировка беременности) и бинарной классифи-
кации (наличие или отсутствие риска рождения 
маловесного плода). Для данной модели площадь 
под ROC-кривой составила 0,96 (95 % довери-
тельный интервал 0,93–0,98), что указывает на 
исключительную способность правильно ранжи-
ровать случаи по вероятности неблагоприятного 
исхода практически во всем диапазоне пороговых 
значений. При рабочем пороге, определенном по 
максимуму индекса Юдена, сеть обеспечила Se 
90 % (то есть выявляла девять из десяти реаль-
но маловесных новорожденных) при сохранении 
Sp 96 % (что ограничивает долю ложноположи-
тельных срабатываний до 4 %). Совокупная точ-
ность классификации достигла 95 %, отражая 
превосходное общее соответствие предсказаний 
реальным исходам. Такой баланс метрик говорит 
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Таблица 3. Ошибки регрессии по моделям (n = 1679 беременных тестовой выборки)

Table 3. Regression errors by models (n = 1679 pregnant women in the test sample)

Модель MAE, нед. RMSE, нед. R²
Линейная регрессия 0,75 0,95 0,91
XGBoost 0,33 0,45 0,986
CatBoost 0,35 0,48 0,984
LightGBM 0,36 0,50 0,983
Стекинг бустингов 0,29 0,40 0,989
Трансформер‑сеть 0,35 0,46 0,985
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о клинической пригодности модели: она миними-
зирует риск пропуска детей с нарушением роста, 
одновременно не перегружая систему избыточ-
ными «ложными тревогами».

В тестовой когорте из 1095 беременных про-
стая логистическая регрессия послужила отправ-
ной точкой: при оптимальном по индексу Юдена 
пороге она сумела выявить лишь 75 % случаев 
маловесности (AUC = 0,88), хотя и сохранила 
высокую Sp (95 %). Переход к деревьям решений 
позволил незначительно увеличить чувствитель-
ность: случайный лес (AUC = 0,91) обнаруживал 
восемь из десяти детей с нарушениями роста, 
поддерживая точность 93 %. На ступень выше 
расположился XGBoost-классификатор (AUC = 
0,94): благодаря более гибкому учету нелиней-
ных взаимодействий он улавливал 85 % проблем-
ных беременностей, не повышая долю ложно-
положительных срабатываний. Наибольший же 
диагностический выигрыш дала мультизадачная 
нейросеть, где общий латентный блок одновре-
менно предсказывал гестационный возраст и ве-
роятность маловесности. При той же методике 

настройки порога Se выросла до 90 %, Sp – до 
96 %, а суммарная точность достигла 95 %, что 
нашло отражение в AUC 0,96. На рисунке вид-
но, как линия нейросети «уходит» левее и выше 
траекторий других моделей: при ложноположи-
тельной доле ≤ 10 % она сохраняет почти макси-
мальную истинно-положительную скорость, тем 
самым минимизируя риск пропустить задержку 
внутриутробного роста и одновременно не пере-
гружая систему избыточными тревогами.

Интерпретационный анализ SHAP подтвер-
дил клиническую правдоподобность решений ал-
горитма. Наиболее весомым оказался показатель 
ОЖ (38 % совокупной важности), далее следова-
ли ДБ (27 %) и ОГ (8 %). В группе материнских 
факторов лидировали активное курение (6 %) и 
паритет (5 %); примечательно, что исключение 
последнего снижало AUC на 0,02 (p = 0,01), под-
тверждая его независимый вклад, ранее отмечен-
ный Ö. Dülger et al. [9]. Таким образом, нейросеть 
опирается на физиологически значимые призна-
ки и сохраняет интерпретируемость, необходи-
мую для клинической интеграции.

После изотонической калибровки кривая со-
ответствия «предсказанная вероятность – факти-
ческая частота» практически совпала с идеальной 
(оценка Брайера 0,033), что обеспечивает прямую 
интерпретацию риска для клинициста.

Обсуждение
Наше исследование показывает, что объеди-

нение динамической фетометрии с клинически-
ми данными матери и мультизадачным обучени-
ем позволяет достичь AUC 0,96 при выявлении 
риска нарушений темпов роста плода и средней 
ошибки датировки беременности 0,29 недели. 
Эти показатели превосходят результаты послед-
них многоцентровых работ: S. Sanchez‑Martínez 
et al. сообщили об AUC 0,81–0,85 даже после 
добавления допплерометрии [8], а W.T. Bekele 
получил AUC 0,88 при использовании градиент-
ного бустинга [3]. Наши данные подтверждают, 
что долгитюдная структура УЗ-серии (1,5 и более 
обследования на беременность) и совмещение ре-
грессии и классификации снижают переобучение 
и повышают чувствительность на 5 – 10 п.п. от-
носительно одиночных моделей [10].

Ключевой вклад в прогноз внесла ОЖ (38 % 
SHAP-важности), что согласуется с выводами  
Ö. Dülger et al., где данный показатель был ве-
дущим предиктором точности массы [9]. До-
бавление паритета и курения улучшило AUC на 
0,02–0,03, подтверждая гипотезу P. Punyapet, вы-
делившего эти факторы среди основных клини-
ческих маркеров задержки роста плода [6].

Iutinsky E.M. et al. Creation of an artificial intelligence model for calculating gestational age ... 
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ROC-кривые мультизадачной нейросети и бустинго-
вых классификаторов при прогнозе риска рождения 
маловесного плода
ROC curves of a multitasking neural network and boosting 
classifiers in predicting the risk of having an underweight 
fetus



Практическая значимость
Разработанная модель искусственного ин-

теллекта обладает несколькими уровнями кли-
нической и организационной ценности. При 
чувствительности 90 % алгоритм выявляет пода-
вляющее большинство случаев задержки роста 
уже на втором скрининге. Это дает акушеру-ги-
некологу 8–10 нед. «терапевтического окна» для 
интенсификации наблюдения, назначения доп-
плерометрии, коррекции питания, контроля ар-
териального давления или решения о досрочном 
родоразрешении. Своевременное вмешательство 
снижает вероятность тяжелой гипотрофии, ас-
фиксии и неонатальных осложнений, уменьшая 
нагрузку на отделения реанимации и интенсив-
ной терапии новорожденных. 

При этом важным является тот факт, что мо-
дель развернута в виде легкого REST-сервиса и 
уже интегрирована в опытный модуль «МИС 
Роддом». После загрузки протокола стандартного 
УЗИ система в режиме реального времени марки-
рует беременных цветовым индикатором риска и 
формирует краткую справку в электронную карту, 
что экономит время врача и минимизирует субъ-
ективные ошибки интерпретации. Алгоритму 
требуются лишь пять базовых фетометрических 
измерений (бипариетальный и лобно-затылоч-
ный размер, ОГ, ОЖ, ДБ) и несколько анамне-
стических характеристик матери; допплер или 
лабораторные маркеры не обязательны. Поэтому 
инструмент может использоваться в районных 
женских консультациях, где нет дорогостоящих 
сканеров эксперт-класса, а также в телемедицин-
ских проектах: данные вводятся вручную или пе-
редаются из протокола, прогноз рассчитывается 
на облачном сервере. 

Моделирование потребности в ресурсах по-
казало, что при внедрении алгоритма и перево-
де беременных группы высокого риска в режим 
усиленного наблюдения число госпитализаций в 
отделения патологии беременности уменьшается 
примерно на 12 % за счет сокращения числа позд-
но выявленных случаев нарушений темпов роста 
плода. Сокращается и средняя продолжитель-
ность пребывания новорожденных в отделении 
реанимации и интенсивной терапии (на 1,3 дня), 
что дает экономию прямых затрат больницы. 

Алгоритм легко дообучить на локальных 
данных другого региона или перенастроить на 
новый набор признаков (например, с учетом доп-
плер-индексов или биохимических маркеров), 
что облегчает трансфер технологий и соответ-
ствие меняющимся клиническим рекомендациям. 
Агрегированные данные прогнозов могут форми-
ровать дашборды для перинатальных центров и 

органов управления здравоохранением: динами-
ка доли беременных высокого риска, разбивка по 
районам, эффективность профилактических про-
грамм. Это создает предпосылки для точечного 
распределения ресурсов и оценки результатов ре-
гиональных интервенций. Таким образом, пред-
ложенный инструмент не только повышает точ-
ность диагностики задержки внутриутробного 
роста, но и вписывается в существующую циф-
ровую инфраструктуру, улучшая клинические 
исходы и оптимизируя использование ресурсов 
системы здравоохранения.

Ограничения
Исследование выполнено в одном учрежде-

нии и на одном типе УЗ-аппарата. Популяцион-
ные и технические различия могут снизить пере-
носимость; требуется внешняя многоцентровая 
проверка. Несмотря на использование веса клас-
сов, чувствительность в подгруппах < 28 нед. 
требует дополнительной оценки вследствие клас-
сового дисбаланса (5,8 % случаев маловесно-
сти). Ретроспективная часть выборки ограничи-
вает контроль над качеством исходных записей. 
Отсутствие допплерометрии в базовой модели 
упрощает внедрение, но, как показал S. Sanchez-
Martínez, фетоплацентарные индексы могут до-
полнительно повысить точность прогноза [8].

Рекомендации и перспективы
Внешняя валидация на выборках других ре-

гионов и аппаратов; использование федеративно-
го обучения для сохранения конфиденциально-
сти. Проспективное клиническое исследование с 
анализом влияния алгоритма на тактику ведения 
беременности и неонатальные исходы. Расши-
рение модели включением допплер-показателей 
и биохимических маркеров (PAPP‑A, PlGF), что 
может быть особенно полезно для раннего (< 24 
нед.) скрининга. Разработка интерпретируемого 
интерфейса для акушеров с визуализацией ин-
дивидуальных SHAP‑факторов для повышения 
доверия к решениям искусственного интеллекта.

Таким образом, представленная модель де-
монстрирует клинически значимую точность и 
может служить основой для системы поддержки 
принятия решений в перинатологии, однако ее 
эффективность должна быть подтверждена в раз-
личных популяциях и прохождении полноценной 
регуляторной оценки [10].

Заключение
Мультизадачный подход («срок + риск мало-

весности») оказался оптимальным. Совмещенная 
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нейросеть на динамических УЗ-данных достигла 
MAE 0,29 нед. по гестационному возрасту и AUC 
0,96 при классификации риска рождения ребенка 
с низкой массой тела. Критически важными пре-
дикторами подтверждены ОЖ и ДБ, а из материн-
ских факторов – плацентарная недостаточность, 
курение и паритет. Исключение любого из этих 
признаков существенно уменьшает чувствитель-
ность и AUC модели.
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