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Роль окислительного стресса в патогенезе COVID-19
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Резюме

Статья посвящена анализу роли окислительного стресса в патогенезе инфекции, вызванной SARS-CoV-2. 
Рассматриваются как традиционные, так и альтернативные механизмы нарушения редокс-гомеостаза, 
включая инактивацию ACE2, митохондриальную дисфункцию, нейроиммунный дисбаланс и микробиота-
ассоциированные пути. Окислительный стресс при COVID-19 способствует активации провоспалительных 
каскадов, транскрипционного фактора NF-κB и подавлению Nrf2-зависимого сигнального пути, усиливая 
продукцию цитокинов и формирование «цитокинового шторма». Нарушение антиоксидантной защиты 
сопровождается иммунной и эндотелиальной дисфункцией, способствуя тромбозам и микрососудистым 
поражениям. Представлены противоречивые клинические и экспериментальные данные, касающиеся 
эффективности антиоксидантной терапии. Подчеркивается необходимость стратифицированного подхода и 
дальнейшего изучения редокс-звеньев патогенеза. Особое внимание уделено нерешенным вопросам, включая 
исходный редокс-статус пациента и механизмы устойчивой активации NADPH-оксидазы и подавления Nrf2-
сигналинга.
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Abstract

This article presents an analysis of the role of oxidative stress in the pathogenesis of COVID-19 caused by SARS-CoV-2. 
Both classical and alternative mechanisms of redox imbalance are discussed, including ACE2 inactivation, mitochondrial 
dysfunction, neuroimmune dysregulation, and microbiota-associated pathways. Oxidative stress in CODID-19 promotes 
activation of pro-inflammatory cascades, the NF-κB transcription factor, and suppression of the Nrf2-driven signaling 
pathway, enhancing cytokine production and promoting a cytokine storm. Impaired antioxidant defense is associated 
with immune and endothelial dysfunction, facilitating thrombosis and microvascular injury. Contradictory clinical and 
experimental data regarding the effectiveness of antioxidant therapy are presented. The article highlights the need for 
a stratified approach and further investigation of redox-related mechanisms in disease progression. Special attention 
is given to unresolved issues, including the patient’s baseline redox status and the mechanisms underlying persistent 
activation of NADPH oxidase and suppression of Nrf2 signaling. These aspects may offer new perspectives for the 
development of targeted therapies for severe forms of COVID-19.
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Введение
Коронавирусная инфекция, вызванная виру-

сом SARS-CoV-2 (COVID-19), была впервые вы-
явлена в декабре 2019 г. в Китае и стремительно 
переросла в глобальную пандемию [1–3]. Распро-
странение заболевания сопровождалось высокой 
заболеваемостью и смертностью, оказав значи-
тельное влияние на здравоохранение, экономику 
и социальную стабильность в мировом масшта-
бе [1–3]. Согласно данным ВОЗ, к началу 2025 г. 
количество подтвержденных случаев COVID-19 
превысило 777 млн, а число зарегистрирован-
ных летальных исходов ‒ 7 млн [4]. Несмотря на 
официальное заявление ВОЗ об окончании панде-
мии как чрезвычайной ситуации в области обще-
ственного здравоохранения, эпидемиологические 
риски сохраняются из-за продолжающейся цир-
куляции вируса и появления его новых вариантов 
[5].

Ключевым механизмом проникновения 
SARS-CoV-2 в клетки человека является взаи-
модействие с ангиотензин-превращающим фер-
ментом-2 (ACE2), экспрессируемым в эпителии 
альвеол, что инициирует вирусный эндоцитоз и 
вовлечение эндоплазматического ретикулума [6–
8]. ACE2 выполняет двойную функцию: с одной 
стороны, он служит рецептором для вирусного 
шиповидного белка, а с другой – участвует в ре-
гуляции воспалительных и окислительных про-
цессов, играя защитную роль при COVID-19 [9]. 
Связывание SARS-CoV-2 с ACE2 может нарушать 
активность фермента, что приводит к снижению 
уровня ангиотензина II (Ang II), основного про-
дукта ренин-ангиотензиновой системы и актива-
ции NADPH-оксидазы [7, 9].

На ранней стадии COVID-19 вирус SARS-
CoV-2 активно реплицируется и оказывает пря-
мое цитопатическое действие [10]. В дальнейшем 
происходит патологическая активация иммунной 
системы, приводящая к развитию гипервоспа-
лительного состояния, известного как «цитоки-
новый шторм», которое может сопровождаться 
тяжелыми системными осложнениями вплоть 
до развития полиорганной недостаточности [10]. 
Хотя у большинства пациентов COVID-19 про-
текает бессимптомно или в легкой форме, при-
мерно у 14 % развивается тяжелое течение, а у 
5–10 % – критическое, с уровнем летальности до 
50 % [11, 12].

Наиболее уязвимыми к тяжелым формам 
заболевания являются пациенты с сопутствую-
щей патологией, включая сердечно-сосудистые 
заболевания, сахарный диабет, ожирение и со-
стояния иммунодефицита [1]. Установлено, что 
окислительный стресс (ОС), характеризующийся 
нарушением баланса между прооксидантами и 
антиоксидантной защитой, может играть ключе-
вую роль в утяжелении течения инфекции у этой 
группы пациентов [9, 13–16]. ОС у тяжелоболь-
ных инициирует каскад патологических реак-
ций  – от системной воспалительной реакции и 
эндотелиальной дисфункции до тромбоза и ак-
тивации тромбоцитарного звена гемостаза, что 
существенно утяжеляет клиническую картину 
заболевания [13, 17]. В связи с этим ОС рассма-
тривается как один из центральных звеньев па-
тогенеза, определяющих тяжесть COVID-19 [15, 
18–20].

Целью настоящего обзора является комплекс-
ный анализ роли ОС в патогенезе COVID-19 с 
акцентом на актуальные нерешенные вопросы, 
включая устойчивость вирус-индуцированной 
активации прооксидантных каскадов, вариабель-
ность редокс-ответа у различных категорий па-
циентов и оценку терапевтического потенциала 
антиоксидантов на фоне противоречивых клини-
ческих данных.

Определение ОС и его характеристика
ОС представляет собой нарушенное состо-

яние клеточного гомеостаза, возникающее в 
условиях, когда образование активных форм 
кислорода (АФК) превышает компенсаторные 
возможности антиоксидантной системы [2, 4, 
7, 16, 21]. АФК  – высокореактивные молекулы, 
включающие как радикальные (например, супе-
роксид-анион , гидроксильный радикал OH ), 
так и нерадикальные (H2O2) формы, образующие-
ся преимущественно в митохондриях в ходе кле-
точного дыхания [2, 16, 22–24]. Хотя традиционно 
АФК ассоциируются с повреждением, в физиоло-
гическом состоянии и при умеренной выработке 
они играют важную регуляторную роль, участвуя 
в модуляции клеточного цикла, апоптоза, проли-
ферации, а также иммунных и воспалительных 
реакций через индукцию продукции цитокинов и 
факторов роста [16, 22, 25, 26].

Поддержание баланса между продукцией АФК 
и их нейтрализацией обеспечивается многоуров-
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невой системой антиоксидантной защиты, состо-
ящей из ферментативных и низкомолекулярных 
компонентов [16, 27, 28]. Ферментативное звено 
включает супероксиддисмутазу (СОД), каталазу, 
глутатионпероксидазу, которые последовательно 
детоксицируют АФК, снижая их биологическую 
активность [2, 29]. СОД инициирует превраще-
ние супероксид-аниона в H2O2, играя тем самым 
ключевую роль в первом этапе антиоксидантной 
защиты [2]. Образующаяся H2O2 затем метаболи-
зируется глутатионпероксидазой, активируемой 
восстановленным глутатионом (GSH), который 
одновременно выступает и как субстрат, и как 
самостоятельный антиоксидант [2]. GSH, обла-
дающий реакционной сульфгидрильной группой, 
способен отдавать электроны в процессе нейтра-
лизации H2O2, тем самым защищая клеточные 
структуры от окислительного повреждения [30], 
а также участвует в большинстве этапов антиок-
сидантной защиты, от прямого взаимодействия с 
АФК до регуляции ферментативных реакций [30]. 
Наряду с митохондриями, важным источником 
АФК выступают NAD(P)H-оксидазы  – фермент-
ные комплексы, локализованные в клеточных 
мембранах и осуществляющие перенос электро-
нов от NAD(P)H к молекулярному кислороду с 
образованием супероксид-аниона [31].

Когда уровень АФК выходит за пределы кон-
троля антиоксидантной системы, либо из-за их 
избыточной генерации, либо из-за истощения за-
щитных ресурсов – развивается ОС [16, 28]. На 
клеточном уровне это сопровождается структур-
ными повреждениями мембран, митохондрий 
и ДНК, а также нарушением экспрессии генов, 
включая те, что регулируют сердечно-легочную 
функцию и воспалительный ответ [22, 32].

ОС в патогенезе COVID-19
ОС как активатор системного  
воспалительного ответа
Инфицирование SARS-CoV-2 сопровождает-

ся выраженным дисбалансом между генерацией 
АФК и активностью антиоксидантных систем, 
что обусловливает развитие выраженного ОС [22]. 
Это состояние приводит к угнетению противови-
русного ответа, активации провоспалительных 
путей и запуску программируемой клеточной 
гибели, тем самым способствуя повреждению 
клеточных и внеклеточных структур [22]. Хотя 
на начальных стадиях инфекции SARS-CoV-2 
продукция АФК может играть модулирующую 
роль, активируя эффекторные звенья иммунной 
защиты и ограничивая репликацию вируса, их 
хроническое накопление индуцирует чрезмерный 
воспалительный ответ [22]. В частности, АФК 

участвуют в инициации «цитокинового шторма» 
за счет активации инфламмасом, а также транс-
крипционных факторов NF-κB и Nrf2, что со-
провождается усилением продукции цитокинов, 
развитием острого респираторного дистресс-син-
дрома и полиорганной недостаточности [4, 7, 33].

NF-κB представляет собой универсальный 
транскрипционный фактор, играющий ключевую 
роль в регуляции продукции цитокинов и хемоки-
нов, а также в формировании воспалительного и 
иммунного ответа [9]. Помимо участия в иммун-
ной регуляции, NF-κB-зависимый путь контро-
лирует клеточную пролиферацию, выживание и 
реализует как прооксидантные, так и антиокси-
дантные эффекты в рамках контроля ОС [34]. Сиг-
налинг NF-κB активируется под действием АФК, 
а также провоспалительных цитокинов, включая 
TNF-α, IL-1β, IL-6 и IL-8, что характерно для па-
тогенеза COVID-19 [9]. SARS-CoV-2 индуцирует 
активацию этого сигнального каскада, особенно в 
условиях выраженного ОС [35]. Вирусная инфек-
ция сопровождается связыванием NF-κB с промо-
торными участками гена индуцибельной синтазы 
оксида азота (NO), что приводит к его гиперэкс-
прессии [9]. АФК реализуют двухфазное влияние 
на путь NF-κB: в зависимости от концентрации 
и контекста они могут как индуцировать его, так 
и ингибировать, способствуя формированию со-
ответственно про- или антиоксидантного ответа 
[36]. При этом антиоксиданты, в частности доно-
ры тиолов, способны подавлять транскрипцион-
ную активность NF-κB, ограничивая экспрессию 
подконтрольных ему генов [22].

Активация воспалительных и развитие окис-
лительного стресса при COVID-19 сопровожда-
ются подавлением Nrf2-зависимого сигнального 
пути, что рассматривается как один из ключевых 
механизмов нарушения клеточной защиты в ус-
ловиях вирусной агрессии [37]. Nrf2, обладая 
плейотропной активностью, функционирует не 
только как сенсор ОС, но и как регулятор воспа-
лительного гомеостаза, обеспечивая репрессию 
транскрипции провоспалительных медиаторов, 
таких как IL-6 и IL-1B [38]. Его активация спо-
собствует восстановлению редокс-гомеостаза 
посредством индукции экспрессии антиокси-
дантных и цитопротективных систем (GSH- и 
NADPH-зависимых, тиоредоксина, тиоредоксин-
редуктазы, пероксиредоксина), выступающих ба-
рьерами против АФК [38]. Патоморфологический 
анализ легочной ткани пациентов с COVID-19 
выявил значительное снижение экспрессии генов, 
вовлеченных в регуляцию Nrf2-зависимого отве-
та [39]. Доказано, что SARS-CoV-2 ингибирует 
Nrf2 на транскрипционном уровне, усиливая тем 
самым дерегуляцию клеточной антиоксидантной 
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защиты и усугубляя тяжесть клинического тече-
ния [22, 40]. Отдельные белки вируса, включая 
NSP14, демонстрируют способность ингибиро-
вать сигнальную ось Nrf2/HMOX-1, тем самым 
нарушая адаптивный потенциал клеток в услови-
ях ОС [41]. Наряду с этим, белок ORF6 нарушает 
функциональную целостность редокс-регуляции 
путем угнетения экспрессии Nrf2, что, как пола-
гают, способствует усилению вирусной реплика-
ции и воспалительной деструкции [42]. Однако 
взаимосвязь и патогенетическая последователь-
ность этих процессов остается не до конца опре-
деленной: неясно, является ли снижение актив-
ности Nrf2 следствием инфекции COVID-19, или 
предсуществующий дефицит Nrf2 обусловливает 
повышенную восприимчивость к SARS-CoV-2 
[37]. Вероятно, данные механизмы реализуются 
синергично, формируя основу патофизиологиче-
ских нарушений при COVID-19 [37].

Новые и альтернативные концепции роли 
ОС в патогенезе COVID‑19
Несмотря на обширные данные, указываю-

щие на ведущую роль ОС в патогенезе COVID‑19, 
в последние годы активно обсуждаются гипотезы, 
предполагающие иной порядок причинно-след-
ственных связей между вирусной инфекцией, 
воспалением и редокс-дисбалансом. Эти кон-
цепции не отрицают участия ОС, однако ставят 
под сомнение его первичность и подчеркивают 
значимость других звеньев патогенеза, таких как 
митохондриальная дисфункция, нейроиммунный 
дисбаланс и нарушения сигнальных осей метабо-
лического ответа [34, 38].

Одной из таких конкурирующих концепций 
является гипотеза о митохондриальной дисфунк-
ции как первичном триггере редокс-дестабилиза-
ции. SARS-CoV-2 взаимодействует с митохондри-
альным аппаратом клеток, вызывая нарушение 
окислительного фосфорилирования и усиление 
утечки электронов с образованием АФК [43]. Это 
подтверждается данными транскриптомного ана-
лиза, демонстрирующими изменение экспрессии 
митохондриальных генов в легочной ткани па-
циентов с тяжелым течением COVID‑19 [44]. По 
этой модели ОС рассматривается как вторичное 
звено, возникающее на фоне вирус-индуцирован-
ной энергетической недостаточности и наруше-
ния митохондриального динамического равнове-
сия [43, 44].

Сформулирована концепция нейроиммунного 
дисбаланса, предполагающая, что тяжелые фор-
мы COVID-19 сопровождаются расстройствами 
регуляции вегетативной и лимбико-гипотала-
мической осей, что приводит к гиперактивации 
системного воспаления и симпатической гипер-

реактивности [34, 45]. ОС в этом контексте рас-
сматривается как отражение нейрогенной сти-
муляции клеток иммунной и сосудистой систем, 
сопровождающейся усиленным метаболизмом и 
активацией NADPH-оксидазы под влиянием ка-
техоламинов [46]. Исследования на модельных 
организмах и у пациентов с постковидным син-
дромом выявляют устойчивые признаки симпати-
котонии, ассоциированной с повышением уровня 
маркеров ОС [45, 46].

Существуют также работы, которые ставят 
под сомнение универсальность ОС как прогно-
стического маркера. В частности, у молодых па-
циентов без сопутствующей патологии при лег-
ком течении COVID-19 уровень АФК и продуктов 
окисления не превышает физиологические значе-
ния, а антиоксидантная терапия не оказывает вы-
раженного эффекта [47, 48]. Это позволило ряду 
авторов предположить, что ОС является не пер-
вопричиной, а отражением степени тяжести вос-
палительного каскада, который, в свою очередь, 
определяется генетикой, гормональным статусом 
и состоянием иммунной системы [49].

Конкурирующие концепции поднимают так-
же вопрос о роли микробиоты и кишечного ба-
рьера в формировании редокс-дисбаланса при 
COVID-19. Дисбактериоз, индуцированный как 
самой инфекцией, так и антибиотикотерапией, 
может способствовать системному воспалению, 
нарушению метаболизма короткоцепочечных 
жирных кислот и усилению прооксидантных 
каскадов [50, 51]. Эти данные дают основание 
рассматривать кишечник как возможный перифе-
рический регулятор редокс-гомеостаза и иммун-
ного ответа при вирусных инфекциях.

Таким образом, ОС при COVID-19 может быть 
не только центральным звеном патогенеза, но и 
побочным эффектом других нарушений – мито-
хондриальных, нейровегетативных, иммунных и 
микробиотических. В связи с вариабельностью 
клинических проявлений и неоднородностью 
популяции пациентов очевидна необходимость 
стратифицированного подхода к оценке ре-
докс-состояния и применения антиоксидантной 
терапии. Существование различных моделей 
подчеркивает сложность патогенеза COVID-19 и 
требует дальнейшего углубленного исследования 
взаимосвязей между системами организма в ус-
ловиях вирусной агрессии [34, 38, 44, 46, 52].

Окислительный стресс и ослабление 
иммунного ответа
Инфекция SARS-CoV-2 нарушает регуляцию 

иммунной системы, способствуя дисфункции 
врожденного и адаптивного иммунитета, прово-
цируя гиперпродукцию провоспалительных ме-
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диаторов и цитокиновый шторм [4]. Активация 
нейтрофилов и макрофагов в ответ на вирусную 
инвазию сопровождается массивным выбросом 
как цитокинов, так и АФК [4, 19]. Этот процесс 
усиливает миграцию эффекторных иммунных 
клеток в инфицированные ткани, что, предполо-
жительно, создает условия, благоприятные для 
усиленной репликации SARS-CoV-2 [17]. Уста-
новлена ассоциация между развитием ОС и по-
вышением отношения числа нейтрофилов к ко-
личеству лимфоцитов (N/L), что может служить 
прогностическим маркером тяжести течения 
COVID-19 [53, 54]: увеличение индекса N/L осо-
бенно выражено при развитии летального исхода 
[53].

Эффективность клеточного ответа врожден-
ного иммунитета, включая активность нейтро-
филов и макрофагов, в значительной степени 
детерминируется формированием ОС [55]. Так, 
при инфицировании SARS-CoV-2 избыточное об-
разование АФК приводит к выраженным иммуно-
патологическим нарушениям [56]. ОС влияет на 
морфофункциональное состояние лимфоцитов, 
особенно T-клеток CD4+, нарушая их активацион-
ный потенциал и способствуя снижению эффек-
тивности иммунного ответа [2, 57]. У пациентов 
с тяжелым течением COVID-19 выявлена связь 
между ОС и угнетением T-клеточного ответа, что 
выражается в снижении функциональной актив-
ности T-клеток CD8+, продукции антител и их 
нейтрализующей способности [58]. Кроме того, 
ОС активирует путь NF-κB в Т-лимфоцитах и ма-
крофагах, индуцируя секрецию провоспалитель-
ных цитокинов, таких как TNFα и IL-6, дополни-
тельно усугубляя иммунную дерегуляцию [2].

Дерегуляция сигнального каскада Ang II–
NADPH-оксидаза как ключевой механизм 
развития ОС при COVID-19
Патогенез COVID-19 включает нарушение ба-

ланса в системе «ренинан–гиотензин», сопрово-
ждающееся стойким повышением уровня Ang II, 
что рассматривается как один из доминирующих 
факторов генерации АФК в условиях вирусной 
инфекции [3]. Работа системы «ренинан–гиотен-
зин» определяется балансом между двумя основ-
ными ферментативными путями: ACE1 способ-
ствует синтезу вазоактивного и прооксидантного 
Ang II, в то время как ACE2 противодействует ему, 
метаболизируя Ang II в ангиотензин 1-7 (Ang 1-7), 
обладающий сосудорасширяющими и антиокси-
дантными свойствами [2, 59]. Ang 1–7 ингибиру-
ют продукцию , тогда как Ang II высту-
пает активатором NADPH-оксидазы – фермента, 
непосредственно вовлеченного в генерацию АФК 
[2].

Связывание SARS-CoV-2 с рецептором ACE2 
приводит к функциональной инактивации по-
следнего и дефициту Ang 1–7, что, в свою очередь, 
способствует патологическому накоплению Ang 
II [60, 61]. Это смещение равновесия в сторону 
Ang II сопровождается избыточной активацией 
AT1-рецепторов, индуцирующей усиленную экс-
прессию и сборку активной формы NADPH-ок-
сидазы [2]. В условиях ОС АФК могут индуци-
ровать окисление критически важных остатков 
цистеина в домене ACE2 и белках S1 SARS-CoV/
CoV-2, повышая их аффинитет к рецептору и спо-
собствуя усиленной вирусной инвазии [61]. Та-
ким образом, происходит усиление ОС, при кото-
ром формируется положительная обратная связь, 
усиливающая как вирусную репликацию, так и 
тканевое повреждение [62].

На модели сосудистых гладкомышечных кле-
ток крыс показано, что даже при полной утрате 
ACE2 in vitro сохраняется высокая активность 
Ang II-зависимой NADPH-оксидазы и продук-
ция супероксидных анионов [2]. У пациентов с 
COVID-19 выявлен выраженный ОС, индуци-
рованный активацией NADPH-оксидазы [63]. 
Кроме того, SARS-CoV-2 нарушает активность 
эндотелиальной NO-синтазы, способствуя допол-
нительной генерации АФК [64].

NAD(P)H-оксидазы экспрессируются в ряде 
клеток, включая нейтрофилы, макрофаги, эндоте-
лиальные и гладкомышечные сосудистые клетки, 
а также кардиомиоциты, где их активация может 
оказывать системное и локальное прооксидант-
ное действие [2]. Молекулярная сборка фермента 
и его функциональная активация опосредуются 
сложными транскрипционными и посттрансля-
ционными механизмами, включающими взаи-
модействие с множеством сигнальных белков и 
платформенных комплексов [61]. В неактивном 
состоянии изофермент, экспрессируемый фаго-
цитирующими клетками, состоит из мембранных 
компонентов gp91phox и p22phox и цитоплазматиче-
ских компонентов p67phox, p47phox, p40phox и Rac1/2. 
Под действием Ang II происходит самосборка 
комплекса, и активный фермент генерирует су-
пероксидные анион-радикалы, играющие цен-
тральную роль в формировании воспалительного 
повреждения [61].

Доклинические исследования показыва-
ют, что даже при дефиците ACE2 активность 
NADPH-оксидазы остается повышенной, что 
подчеркивает автономный характер ее активации 
при избытке Ang II [61]. Поскольку SARS-CoV-2 
нарушает каталитическую функцию ACE2, пода-
вляя превращение Ang II в Ang 1–7, результатом 
становится усиление сигнального каскада Ang II/

44	 SIBERIAN SCIENTIFIC MEDICAL JOURNAL  2025; 45 (6): 40-51

Bykov Yu.V. The role of oxidative stress in COVID-19 pathogenesis



NADPH-оксидаза и прогрессирующее усиление 
ОС [65].

Роль ОС в патогенезе эндотелиальной дис-
функции при COVID-19
Эндотелиальная дисфункция рассматрива-

ется как критическое звено васкулопатии при 
COVID-19, ассоциированное с выраженной ми-
кроангиопатией, ремоделированием сосудов 
малого круга кровообращения, микроагрегаци-
ей эритроцитов, гиперактивацией тромбоцитов 
и формированием микротромбов в капиллярах 
альвеолярной сети [7]. Одним из ключевых ме-
ханизмов ее инициации в условиях вирусной 
инфекции выступает ОС, индуцируемый как пря-
мым воздействием SARS-CoV-2, так и вторичны-
ми воспалительно-окислительными каскадами [7, 
30, 66].

NO представляет собой один из главных ва-
зоактивных медиаторов, регулирующий тонус 
сосудистой стенки, клеточную адгезию и агре-
гационные процессы [67]. Супероксидный ани-
он-радикал вступает в реакцию с NO, образуя 
пероксинитрит – токсичный окислительный 
метаболит, способный вызывать повреждение 
белков, липидов и нуклеиновых кислот, тем са-
мым нарушая целостность эндотелиального ба-
рьера [10]. Центральным источником  при 
COVID-19 служит NADPH-оксидаза-2 (Nox2), 
активируемая в условиях воспаления и гиперпро-
дукции Ang II; образующийся супероксид-анион 
взаимодействует с арахидоновой кислотой, по-
тенцируя активацию тромбоцитов и способствуя 
тромбогенной трансформации сосудистого русла, 
а также нарушает функцию эндотелия, снижая 
биодоступность NO и нарушая редокс-гомеостаз 
сосудистой стенки [10]. Избыточная продукция 
АФК индуцирует не только функциональные, но 
и структурные нарушения, в том числе запуск 
ферроптоза – специфической формы регулятор-
ной клеточной гибели, связанной с накоплением 
липидных перекисей и разрушением мембранной 
целостности [18].

Доказательная база участия ОС  
в патогенезе COVID-19
Накопленные клинико-лабораторные данные 

подтверждают ключевую роль ОС в развитии и 
прогрессировании COVID-19. У пациентов с тя-
желым течением заболевания, госпитализирован-
ных в отделение интенсивной терапии, выявлен 
выраженный дефицит антиоксидантов, включая 
витамин C, GSH, γ-токоферол, β-каротин и ти-
ольные белки [68]. Проведение внутривенной те-
рапии высокими дозами витамина C в течение 7 
дней сопровождалось улучшением оксигенации 
у пациентов с COVID-19, находившихся в кри-

тическом состоянии [69]. Показано значительное 
повышение содержания маркеров ОС (малоно-
вого диальдегида) и снижение активности анти-
оксидантных ферментов (каталаза и СОД) при 
COVID-19 [70]. Сходные результаты были проде-
монстрированы в ряде других исследований, под-
тверждающих повышение уровня маркеров ОС 
у пациентов с SARS-CoV-2, что указывает на их 
участие в патогенезе заболевания [15, 56].

Нарушение редокс-гомеостаза при COVID-19 
отражается также в снижении уровня восста-
новленного GSH в плазме крови и в лобном се-
ром веществе мозга у пациентов с острыми не-
врологическими нарушениями [71]. По данным 
Y. Muhammad et al., уменьшение содержания GSH 
ассоциировано с тяжестью течения COVID-19 и 
повышенной летальностью [72]. По мере про-
грессирования инфекции наблюдается истоще-
ние запасов антиоксидантов, включая GSH, что 
сопровождается снижением общей антиокси-
дантной способности и усилением окислитель-
ного повреждения [73]. Морфологическая вери-
фикация деструкции легочной ткани пациентов с 
COVID-19 выявила высокие уровни окисленных 
форм ДНК, липидов и белков, что служит пря-
мым свидетельством интенсивного ОС [7]. Кли-
ническое исследование с участием 165 пациентов 
показало, что повышенные показатели эндотели-
альной дисфункции (содержание sE-селектина и 
нитратов) и OС (уровень малонового диальдеги-
да) в сыворотке крови являются независимыми 
прогностическими факторами неблагоприятно-
го исхода у госпитализированных пациентов с 
COVID-19 [8].

Антиоксидантная терапия при COVID-19: 
опыт и ограничения
Патогенетическая роль ОС при COVID-19 

обусловила интерес к использованию антиок-
сидантов как средств вспомогательной терапии. 
Среди наиболее изученных соединений – вита-
мин C, N-ацетилцистеин (NAC), мелатонин и 
комбинации различных антиоксидантов. Однако, 
несмотря на биохимическую обоснованность их 
применения, клинические результаты остаются 
неоднозначными, а доказательная база ограни-
ченной.

Наибольшее внимание уделено витамину 
C. Внутривенное введение в высоких дозах (до  
24  г/сут) предполагалось как способ снижения 
воспаления и улучшения оксигенации. Отдель-
ные рандомизированные клинические исследо-
вания (РКИ) действительно показали временное 
улучшение показателей PaO2/FiO2 у пациентов с 
тяжелым течением COVID-19, однако при этом 
не зафиксировано достоверного влияния на об-
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щую летальность или продолжительность пре-
бывания в отделениях интенсивной терапии 
[69, 74]. В нескольких систематических обзорах 
и метаанализах подчеркивается, что, несмотря 
на отдельные положительные результаты, каче-
ство доказательств остается низким из‑за малой 
выборки, гетерогенности вмешательств и отсут-
ствия стандартизации доз [75].

Похожая ситуация наблюдается при приме-
нении NAC. Как предшественник глутатиона и 
донор SH-групп, NAC демонстрировал антиок-
сидантные и противовоспалительные эффекты в 
доклинических моделях. Клинические исследо-
вания у пациентов с COVID-19 выявили умень-
шение уровня С-реактивного белка, D-димеров и 
ферритина, а также тенденцию к снижению по-
требности в кислородной поддержке [76]. Тем не 
менее результаты крупных РКИ оказались проти-
воречивыми: внутривенное введение NAC в дозе 
300 мг/кг не показало значимого преимущества 
по снижению смертности или времени выздоров-
ления [77, 78]. Методологическими недостатка-
ми остаются малый размер выборки, отсутствие 
стратификации по исходному редокс-статусу и 
неравномерность стандартной терапии в кон-
трольных группах.

Мелатонин, обладающий как антиоксидант-
ным, так и иммуномодулирующим потенциалом, 
также рассматривался как возможный компонент 
терапии COVID-19. В некоторых исследованиях 
показано улучшение некоторых клинических па-
раметров (сатурация, температура тела), однако 
ни одно из них не продемонстрировало статисти-
чески значимого влияния на исход заболевания 
[79, 80]. Отдельные публикации описывают по-
пытки комбинированной антиоксидантной тера-
пии (витамин C + витамин Е, NAC + мелатонин 
и др.), однако и здесь результаты остаются проти-
воречивыми. Отсутствие единого подхода к фор-
мированию контрольных групп и разнородность 
клинических критериев оценки существенно за-
трудняют интерпретацию результатов.

Таким образом, на сегодняшний день антиок-
сидантная терапия при COVID-19 не имеет одно-
значного подтверждения эффективности в кли-
нической практике. Несмотря на теоретическую 
обоснованность и отдельные положительные на-
блюдения, большинство исследований страдают 
от серьезных методологических ограничений  – 
малый размер выборки, отсутствие рандомиза-
ции, короткий период наблюдения, варьирующие 
дозы и отсутствие стандартизированных исходов 
[75]. Существующие данные позволяют рассма-
тривать антиоксиданты как потенциальное вспо-
могательное средство, но не как компонент стан-
дартной терапии. Необходимы более масштабные 

РКИ с учетом исходного редокс-статуса пациен-
тов и строгой стандартизацией протоколов.

Заключение
ОС выступает ключевым патогенетическим 

звеном в развитии тяжелых форм COVID-19, опо-
средуя повреждение тканей через дерегуляцию 
иммунного ответа, эндотелиальную дисфункцию 
и активацию воспалительных каскадов. Наруше-
ние редокс-гомеостаза, связанное с инактивацией 
ACE2 и гиперактивацией сигнальной оси Ang II/
NADPH-оксидаза, создает условия для прогрес-
сирующего клеточного и системного поражения. 
Вместе с тем актуальные данные свидетельству-
ют о возможной вторичности ОС по отношению 
к другим патогенетическим факторам, включая 
митохондриальные нарушения, нейроиммун-
ный дисбаланс и микробиота-ассоциирован-
ные механизмы, что подчеркивает необходи-
мость стратифицированного подхода к оценке 
редокс-состояния и обоснованного применения 
антиоксидантной терапии. Несмотря на растущее 
число подтверждений роли ОС при COVID-19, 
эффективность антиоксидантов в клинической 
практике остается противоречивой. Механизмы 
подавления Nrf2-сигналинга, устойчивой акти-
вации NAD(P)H-оксидаз и влияние исходного 
редокс-статуса пациента требуют дальнейшего 
изучения. Их углубленное исследование может 
способствовать разработке персонализированных 
терапевтических стратегий, направленных на мо-
дуляцию редокс-статуса при COVID-19 и смеж-
ных вирусных патологиях.
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