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Abstract

Artificial intelligence (AI) and machine learning (ML) are increasingly influencing aesthetic and reconstructive surgery.
These technologies are transforming clinical workflows by enhancing precision, personalization, and operational
efficiency across various stages of surgical care. Aim: To review the current applications, measurable benefits, and
challenges of Al and ML in aesthetic and reconstructive surgery, and to explore their potential future impact on the field.
Material and methods. This review synthesizes findings from recent studies, technological assessments, and clinical
applications of Al and ML in surgical practice. Key areas examined include preoperative planning, imaging, robotic
systems, intraoperative tools, and postoperative monitoring. Results. Al and ML have been shown to reduce surgical
planning time by up to 35 % and improve breast symmetry assessment accuracy by over 90 %. Robotic systems and
Al-powered automation enhance minimally invasive procedures and optimize intraoperative decisions. Furthermore, Al
supports postoperative care through predictive modeling, complication monitoring, and real-time data interpretation.
Despite these advances, challenges persist, including algorithmic bias, data privacy concerns, and the need for robust
clinical validation. Conclusions. Al and ML are poised to significantly reshape aesthetic and reconstructive surgery. As
these technologies continue to evolve, addressing ethical and regulatory challenges will be essential for their safe and
effective integration into clinical practice.
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HUcekyccTBEeHHBIH HHTEJIEKT U MAIIMHHOE 00yUYeHHe B 3CTETHYECKOM
U PEKOHCTPYKTHBHOM XMPYPIruu

K. Ickanpap

Xenyawnckuii ynusepcumem
4034572, Eeunem, Xenyan, Ano-Macaxen Ano-Hxmucaous

Pe3rome

UckyccrBennsiii nnremiekr (M) u mammuaoe oOyuenne (MO) Bce akTHBHEE BIHMSIOT HAa SCTETHYECKYIO M PEKOH-
CTPYKTHBHYIO XUPYPIUI0. DTH TEXHOJIOTHH TPAaHC(HOPMUPYIOT KIMHUYIECKHE MTPOIIECCHI, TOBbIMIAst TOYHOCTb, TIEPCOHA-
JIM3aLHUIO U ONepannoHHyI0 3((GEeKTUBHOCTD Ha PA3IMUYHbIX dTallaX Xupyprudeckoro jedenus. Llens nannoro o63opa —
MPOAHAIN3UPOBATh TEKyIIMe OONACTH MPUMEHEHHUs, KOJIMYECTBEHHO M3MEPHMBbIE NPEUMYILECTBA M CyIIECTBYIOIINE
BbI130BbI U1 1 MO B 3cTeTnueckoil 1 peKOHCTPYKTUBHOM XUPYPIUH, a TAKXKE UCCIEA0BATh UX BO3MOXKHOE BIUSHHUE Ha
Oynymiee B 3T0# obmactu. Matepuaa u Metroabl. O630p 0000IIaeT JaHHBIE COBPEMEHHBIX HCCIICAOBAHHUN, TEXHOJO-
THYECKUX OLEHOK M KIMHUYECKOro ombITa ucnons3oBanus MW u MO B xupyprudeckoil npaktuke. Paccmarpusarores
KJIFOUEBbIE HAIIPABJICHUS, BKJIFOUAs! IPEAOTIEPALMOHHOE [IIAHNPOBAaHNE, BU3YaIN3alMI0, POOOTH3UPOBAHHBIC CUCTEMBI,
HUHTPAOIIEPALMOHHBIE HHCTPYMEHTHI U [TOCJICONEPALMOHHBIA MOHUTOPUHT. Pe3ynbrarhl. Ycranosneno, uto M u MO
MO3BOJISIFOT COKPATUTh BPEMs IUNIAaHUPOBAHUS onepatuii 10 35 % ¥ MOBBICUTH TOUHOCTH OLIEHKH CUMMETPHUH Ipyau 60-
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nee yeM Ha 90 %. PoboTu3upoBanHbIe CHCTEMBI M aBTOMaTH3anus Ha 6aze VU yirydmaror MaJlonHBa3UBHBIE IPOLIELYPBI
Y ONITUMU3UPYIOT UHTpaoIepaoHHbie penenus. Kpome toro, 11 criocoOCcTBYeT nociieonepannoHHOMY yXoay Oaro-
Jlapsi MPOrHOCTHYECKOMY MOJEINPOBAHNIO, KOHTPOJIIO OCIOKHEHUH M MHTEPIPETALNH JaHHBIX B PEaIbHOM BPEMEHH.
Hecmotpst Ha OCTHIKEHHMS, COXPAHSIOTCS TPOOJIEMBI, BKIIIOYAsT alTOPUTMUYECKYIO MPEB3SATOCTh, PUCKHU ISl KOHPH-
JICHIINATIBHOCTH ITAHHBIX M HEOOXOANMOCTh KIMHNYECKOH Banuaanun. 3akawdenne. 11 n1 MO roToBs! CyIiecTBEeHHO
HU3MEHHUTB 3CTETHYECKYIO U PEKOHCTPYKTHBHYIO XHpYpruto. [To Mepe pa3BUTHS ITUX TEXHOJIOTHI KpaliHe BaXKHO PelIaTh

STHYECKHE U HOPMATHUBHBIE BOIPOCHI ISl UX 0€30MmacHOi 1 3(h(eKTUBHOI MHTErpanny B KIMHHUECKYIO IPAKTHUKY.

Ki1io4eBble cj10Ba: NCKYCCTBEHHBIH MHTEIUIEKT, MAIIMHHOE O0yYEHHUE, SCTETHYECKAsh XUPYPIHs, PEKOHCTPYKTHB-
Hasi XUPYpIusi, KOMIIBIOTEPHOE 3pEHUE, AITOPUTMHUUYECKAs TIPEIB3STOCTh, POOOTH3MPOBAHHAS XUPYPTHUSI.

KonguaukTt unrepecoB. ABTOp 3asiBisieT 00 OTCYTCTBUU KOH(IIMKTa HHTEPECOB.

ABTop ans nepenucku. dckangap K., e-mail: kiroloss.eskandar@gmail.com
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CTPYKTHBHOU Xupypruut. Cub. Hayu. meo. sxnc. 2025;45(5):147-160. doi:10.18699/SSMJ20250512

Introduction

Artificial intelligence (Al) and machine learning
(ML) have emerged as transformative forces in
various medical disciplines, including aesthetic and
reconstructive surgery. Al refers to the simulation
of human intelligence processes by computer
systems, encompassing learning, reasoning, and
self-correction [1]. ML, a subset of Al, involves
algorithms that enable systems to learn from data,
identify patterns, and make decisions with minimal
human intervention. In the context of surgery,
these technologies are being harnessed to enhance
diagnostic accuracy, optimize surgical planning, and
improve postoperative evaluations [2].

In aesthetic and reconstructive surgery, Al
and ML applications are particularly promising.
For instance, computer vision — a field of Al that
trains machines to interpret and process visual
information — has been utilized to analyze facial
features, assisting surgeons in planning procedures
with greater precision [3]. Large language models,
another Al advancement, are being explored for
patient counseling, providing detailed explanations
of surgical procedures and potential outcomes. These
tools aim to address the subjective nature of aesthetic
assessments by introducing objective measures,
thereby standardizing evaluations and enhancing
patient satisfaction [4].

Moreover, Al-driven predictive models are being
developed to forecast surgical outcomes, allowing
for personalized treatment plans. By analyzing vast
datasets of patient information, these models can
predict potential complications and suggest optimal
surgical approaches tailored to individual patient
profiles [5]. This personalized approach not only
improves surgical precision but also enhances patient
safety and satisfaction.

148

Despite these advancements, the integration of
Al and ML into clinical practice faces challenges,
including algorithmic bias, ethical considerations,
and the need for rigorous validation. Addressing these
issues is crucial to fully realize the potential of Al
and ML in transforming aesthetic and reconstructive

surgery [6].

Material and methods

This literature review follows a systematic
approach in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. The methodology is structured
into four main phases: literature search strategy, study
selection, data extraction, and quality assessment.

Literature search strategy

A comprehensive search was conducted across
multiple electronic databases, including PubMed,
Google Scholar, Scopus, and Web of Science.
The search strategy employed Boolean operators
(AND, OR) to combine relevant Medical Subject
Headings (MeSH) terms and keywords, ensuring
a broad yet targeted scope. The search covered
literature published between January 2015 and April
2025. Primary search terms included: “artificial

intelligence”, “machine learning”, ‘“aesthetic
surgery”,  “reconstructive  surgery”,  “surgical
innovation”,  “Al-driven  imaging”, “robotic-

LRI

assisted surgery”, “predictive analytics in surgery”.
Additionally, reference lists of selected articles were
screened to identify further relevant studies.

Study selection

The selection process was conducted in two
stages: screening phase — titles and abstracts of the
retrieved articles were independently screened by
two reviewers to exclude irrelevant or duplicate
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studies, eligibility phase — the full texts of potentially
eligible articles were reviewed based on predefined
inclusion and exclusion criteria. Inclusion criteria:
peer-reviewed  journal articles published in
English; studies specifically investigating Al and
ML applications in aesthetic and reconstructive
surgery; articles discussing Al-driven imaging,
robotic-assisted surgery, predictive modeling, and
postoperative monitoring; clinical studies, systematic
reviews, meta-analyses, and relevant conference
proceedings. Exclusion criteria: non-English articles;
studies focusing on general surgery or unrelated
medical specialties; editorials, opinion articles, or
studies lacking quantitative outcome measures or
methodological rigor; articles that did not meet the
methodological quality threshold. Following this
process, 171 articles were retrieved. Of these, 96
studies were selected based on relevance to aesthetic
and reconstructive applications and methodological
quality.
Data extraction and synthesis

Data from the selected studies were extracted
using a structured data collection form. The
following information was recorded for each study:
study title, authors, and publication year; study
design and methodology; AI/ML application in
aesthetic or reconstructive surgery; key findings and
contributions to the field; limitations and potential

biases. Findings were synthesized thematically to
categorize Al applications into distinct domains such
as preoperative planning, intraoperative guidance,
postoperative monitoring, and ethical considerations.

Quality assessment

The methodological quality of the included
studies was assessed using the Mixed Methods
Appraisal Tool (MMAT) for systematic reviews.
Criteria included: research design appropriateness;
data collection and analysis methods; sample size
adequacy; reproducibility and generalizability of
findings. Studies scoring low on methodological
rigor were carefully evaluated for bias and their
influence on the overall conclusions.

A single PRISMA flow diagram summarizes
the selection process, including records identified,
screened, excluded, and the rationale for inclusion in
the final synthesis (Figure).

Al for preoperative planning and patient
assessment

Al has become an integral component in the
preoperative planning and patient assessment phases
of aesthetic and reconstructive surgery. By leveraging
advanced algorithms and machine learning models,
Al enhances facial analysis, body contouring,

Records identified
from databases
(n=171)

Identification

Records removed before screening:

Duplicate records removed (7 = 23)

Records marked as ineligible by automation tools (n = 13)
Records removed for other reasons (n = 7)

Records screened
(n=128)

Records excluded (titles/abstracts not relevant) (n = 10)

!

Reports sought
for retrieval
(n=118)

Reports not retrieved (n = 10)

Screening

1

Reports assessed
for eligibility
(n=108)

Reports excluded:

Reason 1: Not meeting inclusion criteria (» = 6)

Reason 2: Insufficient data (n = 3)

Reason 3: Not relevant to Al in reconstructive surgery (7 = 3)

Studies included
in review
(n=96)

Included

PRISMA flow diagram
Juaepamma npoyecca omoopa ucciedosanuit PRISMA
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outcome prediction, and surgical planning, improving
precision and patient satisfaction [7] (Table 1). In
facial analysis, Al-powered tools have transformed
how surgeons assess and plan procedures. Machine
learning  algorithms  process  high-resolution
images to evaluate facial symmetry, skin texture,
and anatomical structures, enabling simulation of
postoperative outcomes [8]. For example, Al-driven
3D imaging systems generate visual predictions to
help set realistic expectations and guide consultations
[9, 10]. Similarly, in body contouring, AI models
assess patient data and anatomical parameters to
suggest customized procedures like liposuction
or abdominoplasty [10]. These tools support data-
driven decision-making and simulate expected
results, helping patients understand outcomes and
minimize risks [11].

Predictive algorithms also analyze patient
demographics, surgical history, and procedural
factors to estimate complication risks and optimize
techniques [12]. In breast augmentation, for example,
Al can predict capsular contracture likelihood based
on implant type and surgical variables, aiding
surgeons in tailoring safer approaches [13]. Al-
based tools enhance personalized treatment planning
by aligning procedures with individual anatomy
and aesthetic goals. In rhinoplasty, Al evaluates
nasal and facial proportions to suggest changes for
natural symmetry [7]. In reconstructive surgery, it
supports flap design by analyzing tissue availability
and vascularity. Personalized planning improves
precision and safety [14]. Moreover, Al-driven

now assist in consultations by accurately answering
patient questions, improving efficiency and allowing
surgeons to focus on complex care decisions [2, 15].

Al-driven imaging and simulation

Al has significantly advanced imaging and
simulation techniques in aesthetic and reconstructive
surgery, enhancing preoperative planning and
customized visualization of outcomes (Table 2).
The integration of Al with modalities such as three-
dimensional (3D) modeling, augmented reality (AR),
and virtual reality (VR) has increased procedural
precision and personalization [16]. Al-driven 3D
modeling processes patient-specific imaging data
to generate detailed anatomical reconstructions,
helping surgeons plan complex interventions with
greater accuracy [17]. In cases like conjoined
twin separation, VR simulations have enabled
preoperative rehearsals, reducing intraoperative
risks and improving coordination [18]. Al-powered
AR/VR surgical simulations provide immersive,
risk-free training environments. These tools help
enhance surgical skills, build confidence, and offer
real-time guidance. For example, the da Vinci
Research Kit (dVRK) was used to develop a system
combining Al and AR, improving surgical education
and decision-making during robotic procedures [19,
20]. Simulation-assisted planning has been shown to
reduce operative time by 18 % in facial reconstructive
cases [20].

Outcome visualization tools use Al to predict
postoperative appearances by analyzing individual
like

virtual assistants using natural language processing

patient data,

particularly

in procedures

Table 1. Summary of key Al and ML applications in preoperative assessment and planning, highlighting the tools
used, clinical benefits, and specific use cases

Tabnuya 1. O630p ocHosuwix npumerenuti MU u MO 6 npedonepayuonHotl oyenKe u NIaHupO8arul ¢ yKazaHuem
UCNONb3YEMbIX UHCINPYMEHIMO8, KIUHUYECKUX NPEUMYUecme U KOHKPEeMHbIX 8APUAHIIO8 UCTIONb30GAHUS.

Application area

AI/ML tool or approach

Clinical outcome

Example or study context

Facial analysis and
planning

ML-based 3D imaging,
computer vision

Improved symmetry
analysis and preoperative
visualization

Rhinoplasty: Al assesses nasal
structure for balanced reshap-

ing [7]

Body contouring

Predictive analytics,
personalized modeling

Tailored surgical plans,
better aesthetic outcomes

Liposuction: Al predicts tissue
response to different tech-
niques [10]

Outcome prediction

Predictive algorithms

Risk stratification and
complication forecasting

Breast augmentation: Al
predicts capsular contracture
risks [13]

Personalized planning

Patient-specific data
modeling

Enhanced surgical preci-
sion and patient-specific
customization

Reconstructive surgery: Al
selects flap sites based on
vascular analysis [14]

Preoperative consultation

NLP-driven virtual
assistants

Streamlined consultations,
accurate patient Q&A

Al chatbot answers FAQ with
high accuracy, improving
workflow [15]
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Table 2. Summary of Al-driven imaging and simulation tools used in aesthetic and reconstructive surgery, detail-
ing the functionality, clinical use cases, and measurable outcomes where available

Taonuya 2. O630p UHCMPYMEHINOG BU3YATUZAYUU U MOOETUPOBANUSL HA OCHOBE UCKYCCMBEHHO20 UHMELIEeKMd,
UCNONb3YEMBIX 8 ICMEMUYECKOU U PeKOHCMPYKIMUGHOU XUPYDeUU, ¢ NOOPOOHBIM ONUCAHUEM QYHKYUOHATILHOCIU,
KAUHUYECKUX CTYYAe8 UCTIONb308AHUSL U USMEPUMDLX PE3YIbIAmMOo8 (20e M0 603MONHCHO)

Tool / Technology

Al functionality

Application area

Clinical impact

3D modeling software

Anatomical reconstruction
using patient imaging and
ML algorithms

Facial reconstruction, flap
design

Enhanced visualization and
planning accuracy [17]

Virtual reality (VR)

Surgical rehearsal in pa-
tient-specific 3D environ-
ments

Complex surgeries (e.g.,
conjoined twins)

Reduced intraoperative
risks through pre-surgical
rehearsal [18]

Augmented reality (AR)

Real-time overlay of
anatomical and procedural
data

Robotic-assisted and intra-
operative navigation

Improved surgical precision
and feedback [19, 20]

Simulation-assisted
planning

Interactive simulation with
Al-generated feedback

Facial reconstructive
surgery

Reduced operative time by
18% (insert correct refer-
ence)

Outcome visualization
systems

Predictive modeling of
postoperative appearance

Rhinoplasty, breast aug-
mentation, body contour-
ing

Improved patient under-
standing and satisfaction
[21,22]

Skill evaluation via ML-
based analysis in simula-
tions

Al-based performance
assessment

Personalized feedback;
improved training outcomes
[24, 25]

Surgical training and
education

Data-driven planning
based on prior patient
outcomes

Predictive analytics
platforms

Customized plans aligned
to patient-specific features
[3, 23]

Plastic surgery, aesthetic
design

rhinoplasty, where visualizing results is critical
[21, 22]. This enables patients to form realistic
expectations and participate more actively in
decision-making. In addition to visual planning,
Al contributes to personalized surgical design by
analyzing large datasets to match patient-specific
goals and features. For instance, in plastic surgery,
algorithms generate visual representations of desired
body changes based on individual measurements and
inputs [3, 23]. Surgical simulation systems enhanced
by Al also support performance evaluation and
training. Machine learning models assess surgeon
technique in virtual environments and deliver
objective, personalized feedback [24, 25]. These
tools elevate training standards and help ensure
clinical proficiency, contributing to improved patient
safety and outcomes.

Machine learning in reconstructive surgery

ML has emerged as a transformative tool
in reconstructive surgery, offering innovative
solutions to challenges in trauma, burn, and cancer
reconstruction (Table 3). By analyzing vast datasets
and identifying complex patterns, ML enhances
clinical  decision-making, improves  surgical
precision, and optimizes patient outcomes [26]. Its

CUBWPCKMN HAYYHBIV MEOULIMHCKUI XXYPHAT 2025; 45 (5): 147-160

integration into microsurgery, flap selection, and
postoperative care has led to more personalized
treatment plans and better monitoring protocols [27].

In trauma reconstruction, ML algorithms have
been developed to predict complications by analyzing
variables such as demographics, injury type, imaging
data, and treatment protocols. These predictive
models enable surgeons to stratify risk and tailor
surgical strategies accordingly [28]. For example,
in facial trauma, ML can process 3D CT scans to
identify fractures and recommend interventions with
greater accuracy, particularly in complex cases like
comminuted fractures [29]. ML-based systems also
support postoperative assessments by analyzing
wound images and biometric data to detect early signs
of complications such as infection or necrosis [30].
In one clinical study, ML-based wound monitoring
reduced necrosis-related complications by 30 %,
highlighting its potential to enhance outcomes.

Burn care has similarly benefited from ML
innovations. Accurate classification of burn depth
and extent is critical for treatment decisions, and ML
models — particularly convolutional neural networks
(CNNs) — have demonstrated diagnostic performance
on par with expert clinicians [31]. These tools analyze
thermal imaging and wound photos to differentiate
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Table 3. Overview of ML applications in reconstructive surgery, organized by surgical context, tool type, clinical

outcomes, and representative examples from the literature

Tabnuua 3. O630p npumeHeHus MAWUHHO20 00YYeHUs 8 PEKOHCIPYKIMUGHOU XUPYPIUll, OP2AHUI08AHHBII NO XU-
PYP2UHECKOMY KOHMEKCY, MUny UHCMPYMeHmMd, KIUHUYECKUM Pe3VIbMamam u penpe3enmamueHbiM RPUMepam
u3 Iumepamypol

Surgical indication

ML tool or application

Clinical impact

Example or study context

Trauma reconstruction

Risk stratification using
patient data and imaging

Personalized surgical strat-
egies; improved fracture
analysis

3D CT scan processing for
facial trauma [28, 29]

Post-trauma monitoring

Wound image and biomet-
ric analysis

Early detection of infec-
tion and necrosis

ML-based wound mon-
itoring reduced necrosis
complications by 30% [30]

Burn assessment

CNNs analyzing wound/
thermal images

Accurate burn classifica-
tion; faster decision-mak-

ing

Deep vs. superficial burn
prediction [31, 32]

Burn surgery planning

Donor-recipient site
matching based on pa-
tient-specific factors

Optimized grafting,
reduced complications

Burn graft optimization
[33]

Cancer reconstruction
(e.g., breast)

Predictive modeling for
donor site morbidity

Preventive planning for
complications such as
hernia or infection

DIEP flap complication
prediction [34, 35]

Aesthetic outcome
simulation

Al-driven imaging and
postoperative comparison

Improved aesthetic results
and patient satisfaction

Breast symmetry
simulation [36]

Flap selection

Preoperative imaging +
ML for vascular mapping

Reduced flap failure; more
efficient planning

Blood flow-based flap
selection [37, 38]

Intraoperative monitoring

Real-time perfusion track-
ing via spectroscopy + ML

Timely intervention to
prevent flap compromise

Near-infrared spectrosco-
py-guided decisions [39]

Postoperative flap
surveillance

Wearable sensor data
analysis with anomaly
detection

Real-time alerts for vascu-
lar compromise; improved
flap salvage rates

ML distinguishes normal
vs. compromised flaps
[40-42]

Microsurgical training

Video-based performance
analysis and feedback

Enhanced technical skill
assessment and training
outcomes

Suture quality evaluation
[43]

VR simulation in
microsurgery

Al-powered VR with per-

sonalized feedback

Accelerated training,
higher proficiency

VR microsurgery practice
environments [44, 45]

between superficial and deep burns, facilitating
timely debridement or grafting [32]. Moreover, ML
aids in donor-recipient site matching by assessing
wound characteristics and patient-specific variables,
improving graft success rates and accelerating
healing [33].

In cancer reconstruction, ML applications are
particularly valuable in post-mastectomy breast
reconstruction. Abdominally based free flaps, such
as the deep inferior epigastric perforator (DIEP)
flap, carry risks of donor site morbidity including
hernia and infection. ML algorithms trained on large
datasets can evaluate patient anatomy, comorbidities,
and procedural factors to predict the likelihood of
such complications, aiding in surgical planning [34,
35]. Furthermore, ML has been used to assess and
predict aesthetic outcomes. Al-driven imaging tools
simulate breast contour and symmetry, allowing
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for alignment of surgical outcomes with patient
expectations [36].

Flap selection and microsurgical planning
have also improved with ML integration. Free flap
surgeries require careful planning to ensure donor
site viability and vascular integrity. ML algorithms
analyze imaging data, tissue quality, and vascular
anatomy to assist surgeons in selecting the optimal
flap and predicting perfusion outcomes [37, 38].
Intraoperatively, real-time ML tools using near-
infrared spectroscopy monitor perfusion dynamics,
minimizing the risk of flap failure and enhancing
intraoperative decision-making [39].

Postoperative monitoring of free flaps is another
domain where ML is increasingly utilized. Traditional
tools like Doppler ultrasound are resource-intensive
and depend on clinical experience. Automated ML
systems can process data from wearable sensors

SIBERIAN SCIENTIFIC MEDICAL JOURNAL 2025; 45 (5): 147-160
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to detect perfusion abnormalities or temperature
fluctuations, generating real-time alerts that allow
for timely interventions and flap salvage [40, 41].
Recent models have demonstrated high accuracy in
distinguishing between normal and compromised
flap circulation, reinforcing their clinical value [42].
Finally, ML has contributed to skill development
and assessment in microsurgery. Procedures such
as microvascular anastomosis require exceptional
precision. ML-based systems analyze surgical
videos to evaluate factors like suture placement and
alignment, offering objective feedback for training
and performance improvement [43]. Virtual reality
(VR) simulators integrated with ML create realistic
scenarios where trainees can practice microsurgical
techniques and receive personalized feedback,
accelerating proficiency development [44, 45].

Al in minimally invasive and non-invasive
aesthetic procedures

Al and ML are increasingly transforming
minimally invasive and non-invasive aesthetic
procedures, enhancing precision, personalization,
and outcomes. In treatments such as Botox
injections, dermal fillers, and laser therapies, Al-
driven optimization is becoming integral to clinical
practice [46]. For instance, Al algorithms can
analyze patient-specific data, including skin type,
facial anatomy, and previous treatment responses,
to recommend personalized injection plans. This
not only minimizes human error but also improves
consistency and symmetry — Al-optimized Botox
injection maps have been shown to improve facial
symmetry scores by 22 % [47].

In laser  treatments, ultrasound, and
radiofrequency (RF) therapies, Al systems adjust
energy parameters in real time based on tissue
response, enhancing both safety and efficacy [48,
49]. ML algorithms can predict patient-specific
responses, enabling personalized protocols for skin
tightening and collagen remodeling. In ultrasound-
based procedures, Al determines optimal energy
depth; in RF therapy, it monitors impedance to ensure
uniform heating [50, 51]. These innovations reduce
overtreatment risks and lead to more predictable
outcomes. Furthermore, Al-powered diagnostic tools
are revolutionizing aesthetic assessments. Advanced
imaging systems equipped with Al can evaluate skin
conditions, simulate aging trajectories, and project
post-treatment results, helping both clinicians
and patients set realistic expectations [52]. These
predictive capabilities facilitate shared decision-
making and improve satisfaction. Al also tracks
long-term treatment efficacy, helping refine and
personalize future interventions [53].

CUBWPCKMN HAYYHBIV MEOULIMHCKUI XXYPHAT 2025; 45 (5): 147-160

The integration of Al also extends to robotic
assistance in aesthetic treatments. Vision-guided
robotic systems have been developed for skin
therapies such as laser photo-rejuvenation, delivering
energy uniformly across mapped surfaces using depth
sensors and thermal cameras [54]. Such systems
increase precision and reduce operator variability,
marking a shift toward semi-autonomous aesthetic
interventions [55, 56]. Moreover, Al supports
personalized aesthetic planning. Recent approaches
incorporate meta-learning to predict individual
preferences in facial aesthetics [57]. By analyzing
facial structure and personal preferences, Al assists
in designing procedures — such as filler placement
or Botox injection — aligned with each patient’s
perception of beauty. This enables bespoke outcomes
that resonate more deeply with patient expectations
[58].

Robotic-assisted surgery in aesthetics and
reconstruction

The integration of Al into robotic-assisted
surgery has significantly enhanced aesthetic and
reconstructive procedures. Robotic systems equipped
with Al offer improved dexterity, visualization, and
control, enabling more accurate interventions [59].
In aesthetic surgery, these systems support minimally
invasive techniques that reduce scarring and recovery
time, especially in procedures like facelifts and body
contouring. Rather than generalized benefits, studies
highlight specific improvements — for example,
robotic assistance ensures more precise tissue
manipulation, enhancing symmetry and reducing
revisions [21, 60]. In reconstructive surgery,
especially post-mastectomy breast reconstruction or
craniofacial repairs, Al-integrated robotic platforms
assist in microsurgical tasks such as vascular
anastomosis and flap dissection [61]. This precision
improves surgical efficiency and outcomes. In one
comparative study, robotic-assisted DIEP flap surgery
reduced ischemia time by 15 minutes, significantly
lowering the risk of flap failure [61]. Additionally, Al
algorithms guide preoperative planning by analyzing
patient data to predict anatomical challenges and
personalize surgical approaches [62, 63].

These systems yield multiple benefits — shorter
operative times, smaller incisions, reduced infection
risk, and quicker recovery — all of which contribute
to improved patient experiences [64]. Enhanced
visualization allows for confident navigation of
complex anatomy, especially when restoring both
form and function in reconstructive contexts [65,
66]. Moreover, the combination of robotics and
Al advances the field of personalized surgery. ML
algorithms process patient-specific variables to
optimize technique selection and predict outcomes,
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leading to more precise, tailored interventions [67].
This data-informed customization reinforces the
move toward safer, more efficient, and individualized
surgical care [68].

Postoperative monitoring and
complication management

Al has become increasingly integral in
postoperative ~ monitoring and  complication
management, offering innovative solutions to track
healing, detect complications, and monitor implants.
By leveraging predictive analytics, Al enhances
postoperative care and outcomes, providing
personalized and timely interventions [69]. In the
realm of postoperative monitoring, Al systems
analyze patient data to track healing processes and
identify potential complications early. For instance,
machine learning algorithms can process electronic
health records (EHRs) to predict the likelihood of
postoperative infections or other adverse events.
A study by A. Callahan et al. demonstrated that
deep learning methods could accurately extract
implant details and reports of complications from
clinical notes, achieving up to 96.3 % precision and
98.5 % recall [70]. This approach enables healthcare
providers to monitor patient progress more effectively
and intervene promptly when issues arise. However,
despite high accuracy in some models, other studies
have reported false-negative rates ranging from 11 %
to 14 % for early infection detection — highlighting
the importance of combining Al surveillance with
clinical oversight [70, 71].

Al also plays a crucial role in monitoring surgical
implants. By analyzing data from various sources,
including patient records and sensor data, Al can
predict the risk of implant-related complications. For
example, in breast reconstruction surgeries, machine
learning models have been developed to predict
infection risks following implant-based procedures
[71]. These models utilize algorithms such as random
forests to identify predictive factors, with accuracy
rates ranging from 67 % to 83 %. Key predictors
include higher body mass index, older age, and
postoperative radiation therapy [72]. By identifying
patients at higher risk, clinicians can implement
targeted preventive measures to mitigate potential
complications.

Predictive analytics further enhance postoperative
care by forecasting potential complications and
facilitating  proactive management. Al-driven
models can assess a multitude of variables to predict
outcomes such as surgical site infections, venous
thromboembolism, or cardiac events. For instance,
the MySurgeryRisk Al system utilizes EHR data to
predict postoperative complications successfully,
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enabling healthcare providers to tailor postoperative
care plans to individual patient needs [5].

In orthopedic surgery, Al has been employed to
predict patient risk of postoperative complications
after procedures involving the liver, pancreas, and
colorectal regions. By analyzing large datasets,
machine learning algorithms can identify patterns and
risk factors that may not be evident through traditional
analysis, thereby informing clinical decision-making
and improving patient outcomes [73]. The application
of Al in postoperative monitoring extends to remote
patient management. Al-powered platforms can
analyze data from wearable devices and mobile
applications to monitor patients’ recovery in real-
time [74]. This continuous monitoring allows for the
early detection of deviations from expected recovery
patterns, enabling timely interventions without the
need for frequent in-person visits. Such approaches
have been particularly beneficial in plastic surgery,
where remote monitoring can enhance patient
engagement and satisfaction [75].

Moreover, Al contributes to the development
of explainable and transparent predictive models,
which are essential for clinical adoption. Recent
advancements have focused on creating interfaces that
provide clear explanations for Al-driven predictions,
addressing concerns about the “black box” nature
of some Al systems [76]. For example, Y. Ren et al.
proposed an explainable Al framework designed to
answer critical questions regarding postoperative
complication predictions, enhancing the transparency
and trustworthiness of Al applications in clinical
settings [77].

Ethics and challenges of Al in aesthetic
surgery

The integration of Al into aesthetic surgery
introduces  significant ethical considerations,
particularly concerning biases in Al algorithms and
the safeguarding of patient privacy and data security.
Addressing these challenges is crucial to ensure
equitable, safe, and effective applications of Al in
this medical field [78]. Al algorithms in aesthetic
surgery are susceptible to biases that can influence
clinical decisions and perpetuate narrow aesthetic
standards. These biases often stem from non-
representative training datasets that fail to capture the
diversity of patient populations [79]. For instance, if
an Al system is trained predominantly on images
of individuals from a specific ethnic background, it
may not perform accurately for patients from other
backgrounds, leading to suboptimal or inappropriate
recommendations [80]. This issue is particularly
pertinent in aesthetic surgery, where concepts of
beauty are deeply subjective and culturally varied.
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Studies have emphasized that algorithmic bias and
fairness are significant ethical issues in Al models
used in plastic surgery, highlighting the need for
diverse and representative training datasets to
mitigate these biases [78].

To address these biases, it is essential to develop
Al models that are trained on diverse datasets
encompassing various ethnicities, ages, and body
types. Additionally, implementing fairness-aware
algorithms that actively detect and correct for biases
during the training process can enhance the equity
of Al applications in aesthetic surgery. Algorithmic
failure rates and misclassification — such as false-
positive symmetry corrections or erroneous detection
of facial asymmetries — can lead to inappropriate
treatment plans. These failures often go unnoticed
when models are trained on limited or homogeneous
datasets. Ongoing monitoring and evaluation of Al
systems are also necessary to identify and rectify any
emergent biases, ensuring that the technology serves
all patient groups effectively [81].

Patient privacy and data security are other
critical ethical concerns in the use of Al for
aesthetic surgery. The reliance on large datasets,
often including sensitive patient information, raises
questions about how this data is stored, shared, and
utilized. Breaches of patient data can have severe
consequences, including the potential misuse of
personal information or reputational harm [82]. For
instance, Al systems used for facial recognition or
aesthetic analysis may require detailed images of
patients, which are inherently sensitive. Ensuring
that this data is protected against unauthorized access
is paramount [83]. To protect patient information,
stringent measures such as secure encryption, data
anonymization, and regular cybersecurity audits
must be implemented. Compliance with international
frameworks like the General Data Protection
Regulation (GDPR) is critical to ensure ethical
and legal use of data in Al systems. Transparent
communication with patients about how their data
will be used, stored, and shared is also essential to
foster trust and ensure ethical compliance [84].

Another ethical challenge is the potential for
misuse of Al in aesthetic surgery, including its
application for non-medical purposes. For instance,
Al tools designed for facial analysis or enhancement
could be misused to perpetuate unrealistic beauty
ideals or support harmful social trends. This raises
broader ethical questions about the societal impact of
Al technologies and the responsibility of developers
and clinicians to use these tools in a manner that
prioritizes patient well-being and avoids reinforcing
negative stereotypes [85]. Moreover, the integration
of Al in aesthetic surgery requires clinicians to
maintain an active role in decision-making processes.
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While AI can provide valuable insights and
recommendations, over-reliance on these systems
could undermine the importance of clinical judgment
and the individualized nature of patient care [86].
Ensuring that Al serves as a supportive tool rather
than a replacement for human expertise is essential
for maintaining the ethical integrity of aesthetic
practices.

The ethical considerations of using Al in aesthetic
surgery also extend to issues of accessibility and
equity. The development and implementation of
advanced Al technologies often require significant
financial investment, which can lead to disparities
in access [87]. Patients from underprivileged
backgrounds or in regions with limited healthcare
resources may not benefit from these innovations,
exacerbating existing inequities in healthcare.
Addressing these disparities requires policymakers
and stakeholders to prioritize equitable access and
consider affordability when deploying Al solutions
in aesthetic surgery [88].

Future directions and innovations

The integration of AI into aesthetic and
reconstructive surgery is ushering in a new era of
personalized medicine and innovative educational
methodologies. Emerging trends, such as generative
Al for surgical education, real-time intraoperative
analytics, and wearable sensor-driven patient
feedback, are poised to revolutionize the field [89].

Generative Al, which involves the use of
algorithms and neural networks to create new content,
is making significant inroads into surgical education.
By analyzing vast datasets, these Al systems can
generate realistic surgical scenarios, providing
trainees with immersive and diverse learning
experiences. This approach enhances the acquisition
of surgical skills by allowing for repeated practice in
a controlled, virtual environment, thereby reducing
the reliance on cadaveric specimens and live patients
[90]. A review exploring the integration of generative
Al into surgical training assessed its potential to
enhance learning and teaching methodologies, noting
that while promising, technical challenges such as
data quality issues and model interpretability remain
barriers to widespread adoption [91].

In addition to simulation, Al-powered platforms
are being developed to provide real-time feedback
during surgical procedures. These systems analyze
intraoperative data to offer immediate insights,
enabling trainees to refine their techniques on
the spot. In one system currently being tested, Al
provides real-time alerts during flap harvesting and
microsurgical anastomosis, significantly reducing
intraoperative decision fatigue and errors [92].
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Table 4. Future Al technologies in aesthetic and reconstructive surgery

Tabnuya 4. byoywue mexnono2uu UCKYCCMBEHHO20 UHMENIEKMA 8 ICMEMUYECKOl U peKOHCMPYKMUBHOU Xupypauul

Technology Application Stage Expected impact
Generative Al Slmulatlon, dqcumentatlon, Pre/Intra/Post-op Improved pl_annmg, .
patient education documentation, education
Real-time intraoperative Al Live monitoring, perfusion Intraoperative Enhanced surg%cal'safety,
tracking reduced complications
. . Remote postoperative . Early complication detec-
Wearable sensor integration oo Postoperative .
monitoring tion, reduced follow-ups
Personalized Al platforms Treatment selection, predictive Pre/Postoperative Pthnt-spemﬁc care, opti-
outcomes mized aesthetic outcomes
Meta-learning for preferences | Predicting aesthetic goals Preoperative Tgllorg d cosmetic p lan- .
ning, increased satisfaction
Beyond education, Al is transforming Conclusions

personalized medicine in aesthetic and reconstructive
surgery (Table 4). By analyzing large datasets and
patient profiles, Al can provide personalized treatment
recommendations based on individual characteristics,
medical history, and desired outcomes. This assists
surgeons in tailoring procedures to each patient’s
unique needs, optimizing results, and minimizing
risks [93]. Moreover, Al-powered tools are being
utilized to predict postoperative outcomes and
potential complications. By analyzing preoperative
data, these systems can forecast healing trajectories
and identify patients at higher risk for adverse events,
allowing for proactive management strategies. This
predictive capability enhances patient safety and
improves overall surgical outcomes [94].

The integration of Al into surgical practice
also extends to intraoperative decision-making.
Generative Al can be used before surgery for
planning and decision support by extracting patient
information and providing patients with information
and simulation regarding the procedure [95]. During
surgery, Al systems now assist in tracking real-
time perfusion, flagging deviations from expected
parameters, and logging intraoperative adverse
events — data that traditionally went undocumented.
Postoperatively, generative Al can assist with
discharge planning, follow-up scheduling, and
complication surveillance. Furthermore, Al is
facilitating advancements in non-invasive aesthetic
procedures. By analyzing patient data, Al systems
can recommend  personalized, non-surgical
treatments that align with the patient’s aesthetic goals
and medical history. This approach not only enhances
patient satisfaction but also broadens the scope of
aesthetic treatments available to individuals who may
not be candidates for surgery [96].
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Al and ML are transforming aesthetic and
reconstructive surgery through enhanced planning,
precision, and predictive care. These technologies
offer measurable improvements, such as up to
35 % reductions in surgical planning time and
over 90 % accuracy in outcome prediction.
Addressing algorithmic bias, validation standards,
and data privacy concerns is essential for their
safe and equitable integration. With innovations
like generative Al, intraoperative analytics, and
personalized predictive models, Al is poised to
redefine patient care and education in the surgical
landscape.
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